scholarly journals The Casimir Effect: Physical Manifestations of Zero-Point Energy The Casimir Effect: Physical Manifestations of Zero-Point Energy , K. A. Milton World Scientific, River Edge, N.J., 2001. $87.00 (301 pp.). ISBN 981-02-4397-9

Physics Today ◽  
2003 ◽  
Vol 56 (1) ◽  
pp. 49-50 ◽  
Author(s):  
Peter W. Milonni
2017 ◽  
Vol 26 (12) ◽  
pp. 1743031 ◽  
Author(s):  
Nader A. Inan

The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg–Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.


2003 ◽  
Vol 71 (1) ◽  
pp. 93-93
Author(s):  
Kimball A. Milton ◽  
S. K. Lamoreaux

2008 ◽  
Vol 63 (9) ◽  
pp. 571-574
Author(s):  
Frédéric Schuller

We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail.


2006 ◽  
Vol 15 (12) ◽  
pp. 1987-2010 ◽  
Author(s):  
G. E. VOLOVIK

We discuss the main myths related to the vacuum energy and cosmological constant, such as: "unbearable lightness of space–time"; the dominating contribution of zero-point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.


2017 ◽  
Vol 95 (8) ◽  
pp. 767-769 ◽  
Author(s):  
Tapan Das

This paper presents a mathematical proposition based on zero point energy of the creation of singularity in the current Hot Bing Bang theory of the origin of the universe. The observable universe we live in and can see is finite and is defined by the speed of light. The entire universe is infinite and the observable universe is part of it. Zero point energy exists in the entire universe and at all frequencies up to the Planck frequency. Zero point energy was calculated by Planck. The Casimir effect, predicted by Hendrick Casimir, is caused by zero point energy and has been experimentally proven by S. Lamoreux and U. Mohideen. The author has mathematically calculated that the zero point energy waves up to Planck frequency can combine to create an energy source of colossal amount similar to the singularity of Hot Big Bang theory.


In the present paper we shall attempt to collate the results of four separate lines of research which, taken together, appear to provide some interesting checks between theory and experiment. The investigations to be considered are (1) the discussion by Waller* and by Wentzel,† on the basis of the quantum (wave) mechanics, of the scattering of radiation by an atom ; (2) the calculation by Hartree of the Schrödinger distribution of charge in the atoms of chlorine and sodium ; (3) the measurements of James and Miss Firth‡ of the scattering power of the sodium and chlorine atoms in the rock-salt crystal for X-rays at a series of temperatures extending as low as the temperature of liquid air ; and (4) the theoretical discussion of the temperature factor of X-ray reflexion by Debye§ and by Waller.∥ Application of the laws of scattering to the distribution of charge calculated for the sodium and chlorine atoms, enables us to calculate the coherent atomic scattering for X-radiation, as a function of the angle of scattering and of the wave-length, for these atoms in a state of rest, assuming that the frequency of the X-radiation is higher than, and not too near the frequency of the K - absorption edge for the atom.¶ From the observed scattering power at the temperature of liquid air, and from the measured value of the temperature factor, we can, by applying the theory of the temperature effect, calculate the scattering power at the absolute zero, or rather for the atom reduced to a state of rest. The extrapolation to a state of rest will differ according to whether we assume the existence or absence of zero point energy in the crystal lattice. Hence we may hope, in the first place to test the agreement between the observed scattering power and that calculated from the atomic model, and in the second place to see whether the experimental results indicate the presence of zero-point energy or no.


Sign in / Sign up

Export Citation Format

Share Document