scholarly journals VACUUM ENERGY: MYTHS AND REALITY

2006 ◽  
Vol 15 (12) ◽  
pp. 1987-2010 ◽  
Author(s):  
G. E. VOLOVIK

We discuss the main myths related to the vacuum energy and cosmological constant, such as: "unbearable lightness of space–time"; the dominating contribution of zero-point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.

2012 ◽  
Vol 79 (3) ◽  
pp. 327-334 ◽  
Author(s):  
BO LEHNERT

AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.


Author(s):  
Andrew Beckwith

We reduplicate the Book “Dark Energy” by M. Li, X-D. Li, and Y. Wang, given zero-point energy calculation with an unexpected “length’ added to the ‘width’ of a graviton wave just prior to specifying the creation of ‘gravitons’, while using Karen Freeze’s criteria as to the breakup of primordial black holes to give radiation era contributions to GW generation. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes of the order of Planck mass (10^15 grams) which isabout when the mass of relic black holes is created, 10^-27 or so seconds after expansion starts. Need to state a key result will be in the initial potential V calculated, in terms of other input variables


2012 ◽  
Vol 27 (11) ◽  
pp. 1250041 ◽  
Author(s):  
MU-LIN YAN ◽  
SEN HU ◽  
WEI HUANG ◽  
NENG-CHAO XIAO

The recent OPERA experiment of superluminal neutrinos has deep consequences in cosmology. In cosmology a fundamental constant is the cosmological constant. From observations one can estimate the effective cosmological constant Λ eff which is the sum of the quantum zero point energy Λ dark energy and the geometric cosmological constant Λ. The OPERA experiment can be applied to determine the geometric cosmological constant Λ. It is the first study to distinguish the contributions of Λ and Λ dark energy from each other by experiment. The determination is based on an explanation of the OPERA experiment in the framework of Special Relativity with de Sitter spacetime symmetry.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743031 ◽  
Author(s):  
Nader A. Inan

The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg–Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.


2003 ◽  
Vol 71 (1) ◽  
pp. 93-93
Author(s):  
Kimball A. Milton ◽  
S. K. Lamoreaux

1994 ◽  
Vol 50 (5) ◽  
pp. 3929-3939 ◽  
Author(s):  
E. A. Power ◽  
T. Thirunamachandran

2008 ◽  
Vol 63 (9) ◽  
pp. 571-574
Author(s):  
Frédéric Schuller

We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document