Combined Effect of Ultrahigh Pressure and Nuclear Irradiation on Solid—Solid Phase Transformations

1966 ◽  
Vol 37 (9) ◽  
pp. 3519-3527 ◽  
Author(s):  
Gerald L. Kulcinski ◽  
Charles W. Maynard
1988 ◽  
Vol 53 (12) ◽  
pp. 3072-3079
Author(s):  
Mojmír Skokánek ◽  
Ivo Sláma

Molar heat capacities and molar enthalpies of fusion of the solvates Zn(NO3)2 . 2·24 DMSO, Zn(NO3)2 . 8·11 DMSO, Zn(NO3)2 . 6 DMSO, NaNO3 . 2·85 DMSO, and AgNO3 . DMF, where DMSO is dimethyl sulfoxide and DMF is dimethylformamide, have been determined over the temperature range 240 to 400 K. Endothermic peaks found for the zinc nitrate solvates below the liquidus temperature have been ascribed to solid phase transformations. The molar enthalpies of the solid phase transformations are close to 5 kJ mol-1 for all zinc nitrate solvates investigated. The dependence of the molar heat capacity on the temperature outside the phase transformation region can be described by a linear equation for both the solid and liquid phases.


1996 ◽  
Vol 45 (6) ◽  
pp. 1428-1432
Author(s):  
V. B. Vol'eva ◽  
I. S. Belostotskaya ◽  
A. Yu. Karmilov ◽  
N. L. Komissaroya ◽  
V. V. Ershov

The problem of step motion during lateral growth in solid-solid phase transformations is re-examined. Results are obtained for the steady motion of an individual ledge when volume diffusion in the parent phase is the predominant contribution to the growth rate. A comparison is made between our results and the earlier work of Jones & Trivedi (1971). There are significant differences between the two sets of results particularly in the limit of small perturbations to the Laplacian diffusion field. To confirm the accuracy of the results presented here the calculations have been made by two different methods.


2021 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Arunabha Mohan Roy

A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.


Sign in / Sign up

Export Citation Format

Share Document