Multiphase Phase-Field Approach for Virtual Melting: A Brief Review

2021 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Arunabha Mohan Roy

A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.

2016 ◽  
Vol 704 ◽  
pp. 241-250 ◽  
Author(s):  
Peter Holfelder ◽  
Jin Ming Lu ◽  
Christian Krempaszky ◽  
Ewald A. Werner

A Multi Phase Field model is proposed to describe the microstructure evolution induced by laser-material interaction in Selective Laser Melting (SLM). On the basis of the free enthalpy, the nucleation and growth processes occurring during the relevant phase transformations are explicitly taken into account. Within this contribution, the focus is laid on the SLM processing of the titanium alloy Ti-6Al-4V with special emphasis on the transition between β-titanium and melt. The results are discussed and compared to those of more conventional modelling approaches.


2016 ◽  
Vol 163 (13) ◽  
pp. A2647-A2659 ◽  
Author(s):  
Srivatsan Hulikal ◽  
Chun-Hao Chen ◽  
Eric Chason ◽  
Allan Bower

2014 ◽  
Vol 704 ◽  
pp. 17-21 ◽  
Author(s):  
Alexandre Furtado Ferreira ◽  
José Adilson de Castro ◽  
Ivaldo Leão Ferreira

The microstructure evolution during the directional solidification of Al-Cu alloy is simulated using a phase field model. The transformation from liquid to solid phase is a non-equilibrium process with three regions (liquid, solid and interface) involved. Phase field model is defined for each of the three regions. The evolution of each phase is calculated by a set of phase field equations, whereas the solute in those regions is calculated by a concentration equation. In this work, the phase field model which is generally valid for most kinds of transitions between phases, it is applied to the directional solidification problem. Numerical results for the morphological evolution of columnar dendrite in Al-Cu alloy are in agreement with experimental observations found in the literature. The growth velocity of the dendrite tip and the concentration profile in the solid, interface and liquid region were calculated.


2019 ◽  
Vol 31 (12) ◽  
pp. 125901
Author(s):  
Jacob L Bair ◽  
David G Abrecht ◽  
Dallas D Reilly ◽  
Matthew T Athon ◽  
Jordan F Corbey

2000 ◽  
Vol 652 ◽  
Author(s):  
Alexander E. Lobkovsky ◽  
James A. Warren

ABSTRACTWe present a phase field model of solidification which includes the effects of the crystalline orientation in the solid phase. This model describes grain boundaries as well as solid-liquid boundaries within a unified framework. With an appropriate choice of coupling of the phase field variable to the gradient of the crystalline orientation variable in the free energy, we find that high angle boundaries undergo a premelting transition. As the melting temperature is approached from below, low angle grain boundaries remain narrow. The width of the liquid layer at high angle grain boundaries diverges logarithmically.


Sign in / Sign up

Export Citation Format

Share Document