Imaging sub-ns spin dynamics in magnetic nanostructures with Magnetic Transmission X-ray microscopy

2004 ◽  
Author(s):  
P. Fischer
2012 ◽  
Vol 1 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Peter Fischer ◽  
Charles S. Fadley

AbstractThe magnetic properties of matter continue to be a vibrant research area driven both by scientific curiosity to unravel the basic physical processes which govern magnetism and the vast and diverse utilization of magnetic materials in current and future devices, e.g., in information and sensor technologies. Relevant length and time scales approach fundamental limits of magnetism and with state-of-the-art synthesis approaches we are able to create and tailor unprecedented properties. Novel analytical tools are required to match these advances and soft X-ray probes are among the most promising ones. Strong and element-specific magnetic X-ray dichroism effects as well as the nanometer wavelength of photons and the availability of fsec short and intense X-ray pulses at upcoming X-ray sources enable unique experimental opportunities for the study of magnetic behavior. This article provides an overview of recent achievements and future perspectives in magnetic soft X-ray spectromicroscopies which permit us to gain spatially resolved insight into the ultrafast spin dynamics and the magnetic properties of buried interfaces of advanced magnetic nanostructures.


2020 ◽  
Vol 33 (2) ◽  
pp. 12-19
Author(s):  
Christoph Klewe ◽  
Qian Li ◽  
Mengmeng Yang ◽  
Alpha T. N’Diaye ◽  
David M. Burn ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1598 ◽  
Author(s):  
Jin Xu ◽  
Justin Varghese ◽  
Giuseppe Portale ◽  
Alessandro Longo ◽  
Jamo Momand ◽  
...  

Over the past decades, the development of nano-scale electronic devices and high-density memory storage media has raised the demand for low-cost fabrication methods of two-dimensional (2D) arrays of magnetic nanostructures. Here, we present a chemical solution deposition methodology to produce 2D arrays of cobalt ferrite (CFO) nanodots on Si substrates. Using thin films of four different self-assembled block copolymers as templates, ordered arrays of nanodots with four different characteristic dimensions were fabricated. The dot sizes and their long-range arrangement were studied with scanning electron microscopy (SEM) and grazing incident small-angle X-ray scattering (GISAXS). The structural evolution during UV/ozone treatment and the following thermal annealing was investigated through monitoring the atomic arrangement with X-ray absorption fine structure spectroscopy (EXAFS) and checking the morphology at each preparation step. The preparation method presented here obtains array types that exhibit thicknesses less than 10 nm and blocking temperatures above room temperature (e.g., 312 K for 20 nm diameter dots). Control over the average dot size allows observing an increase of the blocking temperature with increasing dot diameter. The nanodots present promising properties for room temperature data storage, especially if a better control over their size distribution will be achieved in the future.


Author(s):  
S. Eisebitt ◽  
J. Luning ◽  
O. Hellwig ◽  
W.F. Schlotter ◽  
C. Gunther ◽  
...  

2007 ◽  
Vol 76 (21) ◽  
Author(s):  
A. Scherz ◽  
W. F. Schlotter ◽  
K. Chen ◽  
R. Rick ◽  
J. Stöhr ◽  
...  

2016 ◽  
Author(s):  
J. Ewald ◽  
P. Wessels ◽  
M. Wieland ◽  
T. Nisius ◽  
A. Vogel ◽  
...  

2018 ◽  
Vol 25 (4) ◽  
pp. 1144-1152 ◽  
Author(s):  
Aurelio Hierro-Rodriguez ◽  
Doga Gürsoy ◽  
Charudatta Phatak ◽  
Carlos Quirós ◽  
Andrea Sorrentino ◽  
...  

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100–300 nm in thickness to be probed with resolutions of 20–40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document