scholarly journals A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

Author(s):  
J. Ewald ◽  
P. Wessels ◽  
M. Wieland ◽  
T. Nisius ◽  
A. Vogel ◽  
...  
2014 ◽  
Vol 21 (5) ◽  
pp. 1011-1018 ◽  
Author(s):  
Pierre Thibault ◽  
Manuel Guizar-Sicairos ◽  
Andreas Menzel

X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects.


2020 ◽  
Author(s):  
Jean-Christophe Tremblay ◽  
Gunter Hermann ◽  
Vincent Pohl ◽  
Gopal Dixit

In this contribution, we investigate the effect of correlation-induced charge migration on the stability of light-induced molecular magnets. Laser-driven electron dynamics is simulated using density-matrix based time-dependent configuration interaction. The...


2020 ◽  
Vol 128 (13) ◽  
pp. 133903
Author(s):  
Hirofumi Suto ◽  
Akira Kikitsu ◽  
Yoshinori Kotani ◽  
Tomoyuki Maeda ◽  
Kentaro Toyoki ◽  
...  

1980 ◽  
Vol 240 ◽  
pp. L121 ◽  
Author(s):  
J. E. Grindlay ◽  
H. L. Marshall ◽  
P. Hertz ◽  
M. C. Weisskopf ◽  
R. F. Elsner ◽  
...  

Author(s):  
Wah-Keat Lee ◽  
Kamel Fezzaa ◽  
Jin Wang

Abstract X-ray propagation-based phase-enhanced imaging is a powerful new technique that uses the x-ray beam coherence to greatly improve the image contrast. With the high x-ray beam brilliance (or alternately, good beam coherence) available at third-generation synchrotron sources, such as the Advanced Photon Source (APS), propagation-based phase-enhanced imaging can be easily accomplished. The power of this technique lies in its simplicity — it is an in-line geometry and requires little or no beam manipulation, and it works over the entire range of accessible energies (10–100 keV). Unlike conventional radiography, its contrast mechanism is mostly due to Fresnel diffraction and not absorption. The technique works for soft biological samples, as well as thick (several millimeters) stainless-steel samples. In this paper, we demonstrate the utility of this technique to study several fuel injectors and compare the results with conventional absorption radiography. The possibility of extending this technique to time-resolved imaging studies on the fuel injector will be discussed.


2021 ◽  
Vol 7 (33) ◽  
pp. eabf1386
Author(s):  
Allan S. Johnson ◽  
Jordi Valls Conesa ◽  
Luciana Vidas ◽  
Daniel Perez-Salinas ◽  
Christian M. Günther ◽  
...  

Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.


Sign in / Sign up

Export Citation Format

Share Document