chemical solution
Recently Published Documents


TOTAL DOCUMENTS

1640
(FIVE YEARS 197)

H-INDEX

58
(FIVE YEARS 6)

2021 ◽  
Vol 1 (12) ◽  
pp. 1-62
Author(s):  
Yiglet Mebrat

A Laboratory Manual for the Preparation of Chemical Reagents, Solutions and Special Indicators. ETHIOPIAN BIODIVERSITY INSTITUTE, Microbial Biodiversity Directorate. This manual includes detailed view of the following: Laboratory Safety Precautions, Chemical Reagent Preparation, Buffer and Chemical Solution Preparation, Staining Solution Preparation, Indicators and Dye Solution Preparation, Preparation of Special Reagents, Known and Suspected List of Carcinogens and References.


2021 ◽  
Vol 32 (2) ◽  
pp. 1-5
Author(s):  
Agus Ismangil ◽  
Fatimah Arofiati Noor ◽  
Toto Winata

Chemical solution deposition (CSD) is a technique for making a film by keeping synthetic arrangements on the outer layer of the substrate. The outcomes show that the band gap energy of the LiTaO3 film is 1 eV. Electrons are more effectively invigorated to the valence band than to the conduction band on the grounds that the energy required is not excessively huge. Niobium-doped LiTaO3 film has a band gap energy of 1.15 eV. A large amount of energy is needed for electrons to be energized from the valence band to the conduction band. The rubidium-doped LiTaO3 film has a band gap energy of 1.30 eV.


ACS Omega ◽  
2021 ◽  
Author(s):  
Seong Ho Han ◽  
Raphael Edem Agbenyeke ◽  
Ga Yeon Lee ◽  
Bo Keun Park ◽  
Chang Gyoun Kim ◽  
...  

Author(s):  
H. Sanchez Cornejo ◽  
L. De Los Santos Valladares ◽  
V.S. Kamboj ◽  
A. Bustamante Dominguez ◽  
J.C. González ◽  
...  

2021 ◽  
Vol 136 ◽  
pp. 106126
Author(s):  
J.L. Fuentes-Ríos ◽  
D. Cabrera-German ◽  
G. Suárez-Campos ◽  
M.I. Pintor-Monroy ◽  
H. Hu ◽  
...  

2021 ◽  
Author(s):  
Chunli Li ◽  
Zhiwei David Yue ◽  
Xiaohong Tian ◽  
John Hazlewood

Abstract Humic acids, one major type of organic foulants in steam assisted gravity drainage (SAGD) produced water, can precipitate on surface and downhole equipment in SAGD facilities, resulting in high cleaning costs, potential equipment damage and decrease of injectivity of disposal wells. In this paper, a cost-effective chemical solution is presented where an alcohol ethoxylate surfactant/chelating agent package can efficiently disperse the organic fouling molecules in SAGD produced water; therefore, the approach is expected to significantly mitigate the humic acid related fouling issues in the SAGD system. In this study, a variety of commercially available surfactant products were evaluated for their aids in well injectivity on humic acid molecules in the freshly obtained SAGD produced water. The lab testing filtration apparatus was specially designed to simulate the sandstone formation geology of SAGD disposal wells. An "efficiency factor" was defined to grade the dispersing performance of the surfactant and/or surfactant/chelating agent package in the lab filtration tests. The efficiency factor provides a reasonable estimation regarding how well the chemical can reduce the plugging risk in a disposal well as compared to the untreated produced water. Among all the surfactant products tested, an alcohol ethoxylate surfactant with the appropriate molecular structure shows distinguished dispersing performance on humic acids in SAGD produced water. However, the surfactant alone was found inconsistent in the dispersing performance when different batches of the produced water were involved. Inclusion of the specific metal chelating agents to the above surfactant formulation improved the dispersing performance consistency. The chelator molecules presumably help destroy the intermolecular bridges among humic acid molecules in the SAGD produced water; thereby, increasing the dispersing effectiveness of the alcohol ethyoxylate surfactants. Tests show that the efficiency factor of the surfactant/chelating agent package is higher than 8, which implies that the formulation could lead to eight times extension of the interval between workovers on SAGD disposal wells, a significant reduction for the operational downtime and costs. This study presented a cost-effective chemical solution to help disperse the humic acid molecules in SAGD produced water, which can help significantly reduce the fouling risk caused by organic foulants, improve injectivity and extend the intervals between workovers of SAGD disposal wells.


Author(s):  
Yen-Lin Chu ◽  
Sheng-Joue Young ◽  
Tung-Te Chu ◽  
Ajit Khosla ◽  
Kuei-Yuan Chiang ◽  
...  

Abstract In this investigation, ultraviolet (UV) photodetectors (PDs) were fabricated from zinc oxide (ZnO) and Ga-doped ZnO nanostructures on a Corning glass substrate by a simple wet chemical solution method at room temperature. The prepared devices contained two-dimensional (2-D) nanosheet (NS) structures, which could provide a large surface-area-to-volume ratio for UV-sensing. The ZnO and Ga-doped ZnO materials were respectively named ZPD and ZPD-G. All of the samples revealed a hexagonal wurtzite structure and grew preferentially along the (002) crystal plane. Compared with the photoluminescence (PL) spectrum of the ZPD NSs, the corresponding spectra of the ZPD-G NSs in the 380 nm region and green emission were clearly red-shifted and the number of oxygen vacancies slightly decreased. Under 380 nm UV illumination and a 3 V applied bias, the ZnO UV PDs doped with Ga elements exhibited much higher photoresponsivity and stability compared with the un-doped ZnO PDs, indicating good electrical performance. The ZPD-G samples possessed higher rise and recovery times compared with the ZPD samples; this finding could be attributed to the ability of the former to generate numerous electrons.


Sign in / Sign up

Export Citation Format

Share Document