scholarly journals Energy dissipation in spiral vortex layers wrapped around a straight vortex tube

2005 ◽  
Vol 17 (5) ◽  
pp. 055111 ◽  
Author(s):  
Genta Kawahara
2019 ◽  
Vol 80 (2) ◽  
pp. 274-281
Author(s):  
João Fernandes ◽  
Ricardo Jónatas

Abstract Connecting storm-sewers located at rather different elevations may be made with vortex drop shafts in which the energy dissipation is made by the friction between the vertical shaft and the flow and downstream by the impinging jet in a dissipation chamber. Following the first model design in the 1940s, different types of vortex drop shafts have been developed. One of the most used type is the so-called spiral vortex drop shaft developed to work in supercritical flow with good performance in both energy dissipation and space constrains. In this paper, an experimental flow characterization in a spiral vortex drop shaft is conducted covering the three main components of these structures, namely the inlet channel, the vertical shaft and the dissipation chamber. The results include measurement of water depths, pressure and velocity.


1996 ◽  
Vol 326 ◽  
pp. 417-436 ◽  
Author(s):  
N. A. Malik ◽  
J. C. Vassilicos

We investigate the Eulerian and Lagrangian spectral scaling properties of vortex tubes, and the consistency of these properties with Tennekes’ (1975) statistical advection analysis and universal equilibrium arguments. We consider three different vortex tubes with power-law wavenumber spectra: a Burgers vortex tube, an inviscid Lundgren single spiral vortex sheet, and a vortex tube solution of the Euler equation. While the Burgers vortex is a steady solution of the Navier–Stokes equation, the other two are unsteady solutions of, respectively, the Navier–Stokes and the Euler equations. In our numerical experiments we study the vortex tubes by subjecting each of them to external ‘large-scale’ sinusoidal advection of characteristic frequency f and length scale ρ.Not only do we find that the Eulerian frequency spectrum ϕE(ω) can be derived from the wavenumber spectrum E(k) using the simple Tennekes advection relation ω ∼ k for all finite advection frequencies f when the vortex is steady, but also when the vortex is unsteady, and in the Lundgren case even when f = 0 owing to the self-advection of the Lundgren vortex by its own differential rotation.An analytical calculation using the method of stationary phases for f = 0 shows that for large enough Reynolds numbers the combination of strain with differential rotation implies that ϕL(ω) ∼ ω−2+Const for large values of ω. We verify numerically that ϕL(ω) does not change when f ≠ 0. With the Burgers vortex tube we are in a position to investigate the spectral broadening of the Eulerian frequency spectrum with respect to the Lagrangian frequency spectrum. A spectral broadening does exist but is different from the spectral broadening predicted by Tennekes (1975).


1999 ◽  
Vol 65 (640) ◽  
pp. 3977-3985 ◽  
Author(s):  
Genta KAWAHARA ◽  
Hiroshi KIYAMA ◽  
Hitoshi YAGI

2008 ◽  
Vol 595 ◽  
pp. 341-366 ◽  
Author(s):  
KIYOSI HORIUTI ◽  
TAKEHARU FUJISAWA

The stretched spiral vortex is identified using direct numerical simulation (DNS) data for homogeneous isotropic turbulence and its properties are studied. Its genesis, growth and annihilation are elucidated, and its role in the generation of turbulence is shown. Aside from the two symmetric modes of configurations with regard to the vorticity alignment along two spiral sheets and the vortex tube in the core region studied in previous works, a third asymmetric mode is found. One of the two symmetric modes and the asymmetric mode are created not by a conventional rolling-up of a single vortex sheet but through the interaction among several sheets. The stagnation flow caused by the two sheets converges to form recirculating flow through its interaction with the vortex along the third sheet. This recirculating flow strains and stretches the sheets. The vortex tube is formed by axial straining, lowering of pressure and the intensification of the swirling motion in the recirculating region. As a result of the differential rotation induced by the tube and that self-induced by the sheet, the vortex sheets are entrained by the tube and form spiral turns. The transition between the three modes is examined. The initial configuration is in one of two symmetric modes, but it is transformed into another set of two modes due to the occurrence of reorientation in the vorticity direction along the stretched sheets. The symmetric mode tends to be more persistent than the asymmetric mode, among the two transformed modes. The tightening of the spiral turns of the spiral sheets produces a cascade of velocity fluctuations to smaller scales and generates a strongly intermittent dissipation field. To precisely capture the spiral turns, a grid resolution with at least $k_{\rm max} \overline{\eta} \,{\approx}\, 4.0$ (kmax is the largest wavenumber, $\overline{\eta}$ is the averaged Kolmogorov scale) is required. At a higher Reynolds number, self-similar spiral vortices are successively produced by the instability cascade along the stretched vortex sheets. A cluster consisting of spiral vortices with an extensive range of length scales is formed and this cluster induces an energy cascade.


Author(s):  
Krisztina Sebők-Nagy ◽  
László Biczók ◽  
Akimitsu Morimoto ◽  
Tetsuya Shimada ◽  
Haruo Inoue

Sign in / Sign up

Export Citation Format

Share Document