functional units
Recently Published Documents


TOTAL DOCUMENTS

609
(FIVE YEARS 116)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 15 ◽  
Author(s):  
Daniele Ortu ◽  
Ryan M. Bugg

While response systems are often mentioned in the behavioral and physiological literature, an explicit discussion of what response systems are is lacking. Here we argue that response systems can be understood as an interaction between anatomically constrained behavioral topographies occasioned by currently present stimuli and a history of reinforcement. “New” response systems can develop during the lifetime as the organism gains instrumental control of new fine-grained topographies. Within this framework, antagonistic responses compete within each response system based on environmental stimulation, and competition is resolved at the striatum-thalamo-cortical loops level. While response systems can be by definition independent from one another, separate systems are often recruited at the same time to engage in complex responses, which themselves may be selected by reinforcement as functional units.


Author(s):  
Oleksandr Dryuchko ◽  
Natalia Bunyakina ◽  
Bogdan Korobko ◽  
Oleksandr Shefer ◽  
Kateryna Kytaihora ◽  
...  

Information on alkaline coordination nitrates of rare-earth elements of the cerium subgroup - precursors of promising modern multifunctional materials - on the conditions of their formation and existence, the nature of the chemical bond, the composition, structure, shape of the Ln coordination polyhedra, the type of ligand coordination, and the existence of isotypic series in stoichiometry are generalized. composition, structure, characteristic properties. The data obtained (as primary information) is the basis for the detection, identification, and control of the phase state of processing objects in the preparatory stages, the choice of criteria for the compatibility of the components in the formation of single-layer and layered nanostructured oxide composite systems of lanthanides and transition elements for general purposes, with catalytic and photocatalytic activity, coatings self-cleaning with hydrophilic properties; development of various combined methods for their activation and identification of technological functional dependencies; controlled modification of the properties of the obtained target products. To increase the photocatalytic activity of coating samples based on highly dispersed anatase TiO2, a methodology for chemical modification of oxidation centers in their surface layer with heat treatment in contact with thermolysis products of alkaline coordination lanthanide nitrate melts is proposed. An effective test photocatalytic destruction of organic substrates vapors has been discovered using ethanol as an example.Effective activation of the functioning of functional units in the composition of self-adjusting air purification complexes using new photocatalytically active three-layer perovskite-like oxide materials M2Ln2Ti3O10 (M - Li, Na, K; Ln - La, Nd) has been proven. The variability of such methods for creating and modifying the characteristics of polyfunctional coatings is determined by the number and individual properties of representatives of the natural series of lanthanides, alkali metals of the periodic system, the peculiarities of their cooperative behavior in the preparatory technological stages, conditions and methods of activation of formation processes, the nature of the substrate, and other factors.


2021 ◽  
Vol 38 (1) ◽  
pp. 113-153
Author(s):  
Laura E. Parodi

Abstract Kabul was the seat of Mughal power during the first half of the sixteenth century, and—it is argued here—provided inspiration for the better-known Mughal metropoles of Hindustan. Sources suggest that the topography of Kabul was already well established, along with its major landmarks, decades before Babur made it the seat of his court in 1504. Among these landmarks were three remarkable royal gardens (all Timurid foundations), which performed complementary functions. The one known today as Bagh-i Babur acquired funerary connotations with the burial of Babur’s mother there in 1505, if not earlier. The Bagh-i Shahrara hosted the governor as well as distinguished guests, including widowed or divorced princesses and imperial visitors. The Chaharbagh was the seat of the court. Its functional units included residential quarters for the ruler and the harem, a courtyard of audience, administrative quarters, and service provisions. In this study, Kabul and its gardens are compared with Mughal counterparts in Hindustan, and (more briefly) with Timurid Herat and Safavid Isfahan. This comparison contributes to an understanding of the unique position occupied by gardens in the Timurid realm and in the courts of their Mughal and Safavid successors.


Author(s):  
Evgeny A. Pamfilov ◽  
◽  
Vladimir V. Kapustin ◽  
Galina A. Pilyushina ◽  
Elena V. Sheveleva ◽  
...  

Ensuring the competitiveness of enterprises of the forest complex is largely due to the level of reliable and high-performance equipment use, since this achieves a significant increase in the efficiency of timber harvesting and processing. At the same time, the required level of reliability of logging machines is largely determined by the performance of their functional units that carry out the basic technological operations. Accordingly, the development and implementation of ways and methods to improve the performance of functional units of machines is important when creating promising models of the specified equipment. This requires an analysis of the prospects and technical possibilities for improving the main mechanisms and units of logging machines and the factors limiting their performance. In order to improve the performance of machine functional units, it is essential to ensure the coordinated provision of favorable levels of a significant number of design and technological parameters. In particular, it is advisable to optimize the nature of the relative movement of the friction-contacting surfaces of the parts and reduce the loads acting on them. This is due to the fact that these factors determine the wear resistance and friction resistance, as well as the thermal mode of the machine operation, the stress state of the functional surface layers and the strength of the fixed joints. At the same time, the influence of operating conditions, the wear intensity and service life of the objects under study should be taken into account. This approach is due to the fact that tribotechnical units of logging machines perform their functions under the action of high shock, cyclic and vibration loads, in a wide range of harsh natural and climatic conditions characterized by low temperatures, high humidity, and the action of chemical and abrasive media. All this should be considered when justifying effective ways to improve the performance of functional units, including manipulators of logging machines, and achieved through regulated directional control of the properties of surface layers in the design and manufacture of friction-contacting parts. The paper substantiates the need to create scientific and engineering foundations for improving the performance of functional units and working bodies of machines, as well as achieving the required performance, durability and reliability. For this purpose, the tasks of further research aimed at obtaining information, the absence of which makes it impossible to create domestic import-substituting equipment, are clarified. For citation: Pamfilov E.A., Kapustin V.V., Pilyushina G.A., Sheveleva E.V. Improving the Performance of Working Bodies and Tribosystems of Harvester Technological Equipment. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 135–149. DOI: 10.37482/0536-1036-2021-6-135-149


2021 ◽  
Vol 11 (12) ◽  
pp. 1565
Author(s):  
Sayan Kahali ◽  
Marcus E Raichle ◽  
Dmitriy A Yablonskiy

While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain’s cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood–oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units’ connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.


2021 ◽  
Author(s):  
Pengcheng Liu ◽  
Jianwei Han ◽  
Yingqi Ma ◽  
Feng Zhang ◽  
Zongguo Wu ◽  
...  

2021 ◽  
Author(s):  
Max Mennicken ◽  
Sophia K Peter ◽  
Corinna Kaulen ◽  
Ulrich Simon ◽  
Silvia Karthäuser

The performance of nanoelectronic and molecular electronic devices relies strongly on the employed functional units and their addressability, which is often a matter of appropriate interfaces and device design. Here, we compare two promising designs to build up solid-state electronic devices utilizing the same functional unit. Optically addressable Ru-terpyridine complexes were incorporated in supramolecular wires or employed as ligands of gold nanoparticles and contacted by nanoelectrodes. The resulting small area nanodevices were thoroughly electrically characterized as a function of temperature and light exposure. Differences in the resulting device conductance could be attributed to the device design and the respective transport mechanism: thermally activated hopping conduction in case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge-transfer in the Ru-terpyridine complexes used as switching ligands. Finally, our results reveal a superior device performance of nanoparticle-based devices compared to molecular wire devices based on Ru-terpyridine complexes as functional units.


Sign in / Sign up

Export Citation Format

Share Document