Three-dimensional solutions for coating flow on a rotating horizontal cylinder: Theory and experiment

2005 ◽  
Vol 17 (7) ◽  
pp. 072102 ◽  
Author(s):  
P. L. Evans ◽  
L. W. Schwartz ◽  
R. V. Roy
Author(s):  
Zhenhuan Zhou ◽  
Yanxia Feng ◽  
Minglang Xu ◽  
Jinxin Wang ◽  
Xinsheng Xu ◽  
...  

2015 ◽  
Vol 26 (5) ◽  
pp. 647-669 ◽  
Author(s):  
M. A. LAM ◽  
L. J. CUMMINGS ◽  
T.-S. LIN ◽  
L. KONDIC

We consider a coating flow of nematic liquid crystal (NLC) fluid film on an inclined substrate. Exploiting the small aspect ratio in the geometry of interest, a fourth-order nonlinear partial differential equation is used to model the free surface evolution. Particular attention is paid to the interplay between the bulk elasticity and the anchoring conditions at the substrate and free surface. Previous results have shown that there exist two-dimensional travelling wave solutions that translate down the substrate. In contrast to the analogous Newtonian flow, such solutions may be unstable to streamwise perturbations. Extending well-known results for Newtonian flow, we analyse the stability of the front with respect to transverse perturbations. Using full numerical simulations, we validate the linear stability theory and present examples of downslope flow of nematic liquid crystal in the presence of both transverse and streamwise instabilities.


1991 ◽  
Vol 113 (4) ◽  
pp. 300-304 ◽  
Author(s):  
J. Orozco

This article presents the results of an investigation on condensation of a downward flowing vapor on a horizontal cylinder embedded in a vapor-saturated porous medium. The Brinkman model is used to describe theoretically the flow field in both the liquid and vapor phases. The resulting governing equation was integrated numerically with the help of the fourth-order Runge-Kutta method. The dependence of the condensate layer thickness and Nusselt number on the vapor velocity and on the permeability of the porous material is reported. Experiments were conducted to verify the theoretical findings, and good agreement was found between theory and experiment.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3364
Author(s):  
Gennady M. Gusev ◽  
Ze D. Kvon ◽  
Alexander D. Levin ◽  
Nikolay N. Mikhailov

The thermoelectric response of 80 nm-thick strained HgTe films of a three-dimensional topological insulator (3D TI) has been studied experimentally. An ambipolar thermopower is observed where the Fermi energy moves from conducting to the valence bulk band. The comparison between theory and experiment shows that the thermopower is mostly due to the phonon drag contribution. In the region where the 2D Dirac electrons coexist with bulk hole states, the Seebeck coefficient is modified due to 2D electron–3D hole scattering.


Author(s):  
Marcelo A. Vitola ◽  
Edith Beatriz Camano Schettini ◽  
Jorge Hugo Silvestrini

Sign in / Sign up

Export Citation Format

Share Document