Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow

2012 ◽  
Vol 34 ◽  
pp. 68-83 ◽  
Author(s):  
S. Chad Gibbs ◽  
Ivan Wang ◽  
Earl Dowell
2000 ◽  
Vol 123 (3) ◽  
pp. 490-500 ◽  
Author(s):  
Peng Shan

This paper is part II of a comprehensive study on the blade leading edge sweep/bend of supersonic and transonic axial compressors. The paper explores and analyzes the kinematic characteristic variables of three-dimensional (3-D) swept shock surfaces. In the research field studying the sweep aerodynamics of axial flow compressors and fans, many types of high loading swept blades are under intensive study. So, in both direct and inverse design methods and experimental validations, an accurate grasp of the sweep characteristic of the blade’s 3-D swept shock surface becomes of more concern than before. Associated with relevant blading variables, this paper studies the forward and zero and backward sweeps of shock surfaces, defines and resolves every kind of useful sweep angle, obtains dimensionless sweep similarity factors, suggests a kind of method for the quantitative classification of 3-D shock structures, and proposes the principle of 3-D shock structure measurements. Two rotor blade leading edge shock surfaces from two high loading single stage fans are analyzed and contrasted. This study is the foundation of the kinematic design of swept shock surfaces.


Author(s):  
Christoph Biegger ◽  
Bernhard Weigand ◽  
Alice Cabitza

Swirl cooling is a very efficient method for turbine blade cooling. However, the flow in such a system is quite complicated. In order to gain understanding of the flow structure, the velocity field in a leading edge swirl cooling chamber with two tangential inlet ducts is experimentally studied via Particle Image Velocimetry (PIV). The examined swirl tube is 1 m long and has a diameter of 50 mm. It represents an upscaled generic model of a leading edge swirl chamber. The Reynolds number, defined by the bulk velocity and the swirl tube diameter, ranges from 10,000 to 40,000, and the swirl number is 5.3. Velocity fields are measured in the center plane of the tube axis with stereo- and tomographic-PIV using two and four CCD cameras respectively. Tomographic-PIV is a three-dimensional PIV technique relying on the illumination, recording, reconstruction and cross correlation of a tracer particle distribution in a measurement volume opposed to a plane in stereo-PIV. For statistical analysis 2,000 vector maps are calculated and evaluations show a sample size of 1,000 ensembles is sufficient. Our experiment showed, that the flow field is characterized by a vortex system around the tube axis. Near the tube wall we observed an axial flow towards the outlet with a circumferential velocity component in the same order of magnitude. In contrast the vortex core consists of an axial backflow (vortex breakdown). The gained understanding of the flow field allows to predict regions of enhanced heat transfer in swirl chambers.


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.


1990 ◽  
Vol 112 (4) ◽  
pp. 587-596 ◽  
Author(s):  
A. R. Wadia ◽  
B. F. Beacher

The leading edge region of turbomachinery blading in the vicinity of the endwalls is typically characterized by an abrupt increase in the inlet flow angle and a reduction in total pressure associated with endwall boundary layer flow. Conventional two-dimensional cascade analysis of the airfoil sections at the endwalls indicates large leading edge loadings, which are apparently detrimental to the performance. However, experimental data exist that suggest that cascade leading edge loading conditions are not nearly as severe as those indicated by a two-dimensional cascade analysis. This discrepancy between two-dimensional cascade analyses and experimental measurements has generally been attributed to inviscid three-dimensional effects. This article reports on two and three-dimensional calculations of the flow within two axial-flow compressor stators operating near their design points. The computational results of the three-dimensional analysis reveal a significant three-dimensional relief near the casing endwall that is absent in the two-dimensional calculations. The calculated inviscid three-dimensional relief at the endwall is substantiated by airfoil surface static pressure measurements on low-speed research compressor blading designed to model the flow in the high-speed compressor. A strong spanwise flow toward the endwall along the leading edge on the suction surface of the airfoil is responsible for the relief in the leading edge loading at the endwall. This radial migration of flow results in a more uniform spanwise loading compared to that predicted by two-dimensional calculations.


2007 ◽  
Vol 592 ◽  
pp. 89-115 ◽  
Author(s):  
A. MILIOU ◽  
A. DE VECCHI ◽  
S. J. SHERWIN ◽  
J. M. R. GRAHAM

Three-dimensional spectral/hp computations have been performed to study the fundamental mechanisms of vortex shedding in the wake of curved circular cylinders at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder whose centreline sweeps through a quarter section of a ring and the inflow direction lies on the plane of curvature of the quarter ring: the free stream is then parallel to the geometry considered and the part of the ring that is exposed to it will be referred to as the ‘leading edge’. Different configurations were investigated with respect to the leading-edge orientation. In the case of a convex-shaped geometry, the stagnation face is the outer surface of the ring: this case exhibited fully three-dimensional wake dynamics, with the vortex shedding in the upper part of the body driving the lower end at one dominant shedding frequency for the whole cylinder span. The vortex-shedding mechanism was therefore not governed by the variation of local normal Reynolds numbers dictated by the curved shape of the leading edge. A second set of simulations were conducted with the free stream directed towards the inside of the ring, in the so-called concave-shaped geometry. No vortex shedding was detected in this configuration: it is suggested that the strong axial flow due to the body's curvature and the subsequent production of streamwise vorticity plays a key role in suppressing the wake dynamics expected in the case of flow past a straight cylinder. The stabilizing mechanism stemming from the concave curved geometry was still found to govern the wake behaviour even when a vertical extension was added to the top of the concave ring, thereby displacing the numerical symmetry boundary condition at this point away from the top of the deformed cylinder. In this case, however, the axial flow from the deformed cylinder was drawn into the wake of vertical extension, weakening the shedding process expected from a straight cylinder at these Reynolds numbers. These considerations highlight the importance of investigating flow past curved cylinders using a full three-dimensional approach, which can properly take into account the role of axial velocity components without the limiting assumptions of a sectional analysis, as is commonly used in industrial practice. Finally, towing-tank flow visualizations were also conducted and found to be in qualitative agreement with the computational findings.


1997 ◽  
Vol 352 (1351) ◽  
pp. 329-340 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Recent flow visualisation experiments with the hawkmoth, Manduca sexta , revealed small but clear leading–edge vortex and a pronounced three–dimensional flow. Details of this flow pattern were studied with a scaled–up, robotic insect (‘the flapper’) that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading–edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 % of the wing length, its diameter increased approximately from 10 to 50 % of the wing chord. The leading–edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 % of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading–edge vortex were fully used for lift generation, it could support up to two–thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.


Author(s):  
A. R. Wadia ◽  
B. F. Beacher

The leading edge region of turbomachinery blading in the vicinity of the endwalls is typically characterized by an abrupt increase in the inlet flow angle and a reduction in total pressure associated with endwall boundary layer flow. Conventional two-dimensional cascade analysis of the airfoil sections at the endwalls indicates large leading edge loadings, apparently detrimental to the performance. However, experimental data exist that suggest that cascade leading edge loading conditions are not nearly as severe as those indicated by a two-dimensional cascade analysis. This discrepancy between two-dimensional cascade analyses and experimental measurements has generally been attributed to inviscid three-dimensional effects. This article reports on two- and three-dimensional calculations of the flow within two axial flow compressor Stators operating near their design points. The computational results of the three-dimensional analysis reveal a significant three-dimensional relief near the casing endwall absent in the two-dimensional calculations. The calculated inviscid three-dimensional relief at the endwall is substantiated by airfoil surface static pressure measurements on low speed research compressor blading designed to model the flow in the high speed compressor. A strong spanwise flow towards the endwall along the leading edge on the suction surface of the airfoil is responsible for the relief in the leading edge loading at the endwall. This radial migration of flow results in a more uniform spanwise loading compared to that predicted by two-dimensional calculations.


1998 ◽  
Vol 201 (4) ◽  
pp. 461-477 ◽  
Author(s):  
H Liu ◽  
C P Ellington ◽  
K Kawachi ◽  
C van den Berg ◽  
A P Willmott

A computational fluid dynamic (CFD) modelling approach is used to study the unsteady aerodynamics of the flapping wing of a hovering hawkmoth. We use the geometry of a Manduca sexta-based robotic wing to define the shape of a three-dimensional 'virtual' wing model and 'hover' this wing, mimicking accurately the three-dimensional movements of the wing of a hovering hawkmoth. Our CFD analysis has established an overall understanding of the viscous and unsteady flow around the flapping wing and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. <P> A coherent leading-edge vortex with axial flow was detected during translational motions of both the up- and downstrokes. The attached leading-edge vortex causes a negative pressure region and, hence, is responsible for enhancing lift production. The axial flow, which is derived from the spanwise pressure gradient, stabilises the vortex and gives it a characteristic spiral conical shape. <P> The leading-edge vortex created during previous translational motion remains attached during the rotational motions of pronation and supination. This vortex, however, is substantially deformed due to coupling between the translational and rotational motions, develops into a complex structure, and is eventually shed before the subsequent translational motion. <P> Estimation of the forces during one complete flapping cycle shows that lift is produced mainly during the downstroke and the latter half of the upstroke, with little force generated during pronation and supination. The stroke plane angle that satisfies the horizontal force balance of hovering is 23.6 degrees , which shows excellent agreement with observed angles of approximately 20-25 degrees . The time-averaged vertical force is 40 % greater than that needed to support the weight of the hawkmoth.


Author(s):  
C. Clemen

The modern aerodynamic design process of blades for commercial axial-flow compressors for aero-engines has to be fast but also accurate in terms of the blade and profile shaping. To achieve that, the three-dimensional flow effects, which have a significant impact on the optimum blade geometry, have to be considered in the early design phase. That requires fast software tools, which support the fully three-dimensional-design of compressor blades. This paper describes the software tool INCA-3D and its capabilities to calculate camber lines for compressor blade profiles inversely. INCA-3D is a Fortran coded software which runs on Unix and Windows operating systems and uses inviscid potential theory to calculate the camber lines of compressor rotor and stator blades based on the three-dimensional blade loading distribution. The input to the programme is the three-dimensional blade load distribution in terms of Δcp, the distribution of space-to-chord ratio, stagger angle (inlet angle), Mach number, chord length and leading edge shape (sweep and dihedral), which can be taken from throughflow analysis and 2D-blade-to-blade calculations. The output of INCA-3D are camber lines distributions along chord for 21 blade heights equally distributed over the annulus in a format which can be read in by a blade generation software. An INCA-3D run for a blade row takes, depending on the required accuracy, between 6 and 120 minutes and runs automatically. That means that a whole set of compressor blades can be generated within hours. The present paper shows the basic equations of the method, which INCA-3D is using and gives examples of the application of the software for different compressor test cases.


1997 ◽  
Vol 352 (1351) ◽  
pp. 317-328 ◽  
Author(s):  
Coen van den Berg ◽  
Charles P. Ellington

Visualization experiments with Manduca sexta have revealed the presence of a leading–edge vortex and a highly three–dimensional flow pattern. To further investigate this important discovery, a scaled–up robotic insect was built (the ‘flapper’) which could mimic the complex movements of the wings of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing revealed a small but strong leading–edge vortex on the downstroke. This vortex had a high axial flow velocity and was stable, separating from the wing at approximately 75 % of the wing length. It connected to a large, tangled tip vortex, extending back to a combining stopping and starting vortex from pronation. At the end of the downstroke, the wake could be approximated as one vortex ring per wing. Based on the size and velocity of the vortex rings, the mean lift force during the downstroke was estimated to be about 1.5 times the body weight of a hawkmoth, confirming that the downstroke is the main provider of lift force.


Sign in / Sign up

Export Citation Format

Share Document