scholarly journals Interaction energies in hydrogen-bonded systems: A testing ground for subsystem formulation of density-functional theory

2006 ◽  
Vol 124 (2) ◽  
pp. 024104 ◽  
Author(s):  
R. Kevorkyants ◽  
M. Dulak ◽  
T. A. Wesolowski
2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 926
Author(s):  
Malose J. Mphahlele ◽  
Eugene E. Onwu ◽  
Marole M. Maluleka

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)–NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N–H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


2020 ◽  
Vol 44 (34) ◽  
pp. 14513-14528
Author(s):  
Alireza Soltani ◽  
Mohammad Ramezanitaghartapeh ◽  
Masoud Bezi Javan ◽  
Mohammad T. Baei ◽  
Andrew Ng Kay Lup ◽  
...  

The interaction energies and optoelectronic properties of sarin (SF) and chlorosarin (SC) on the B12N12 with and without the presence of an electric field have been studied using density functional theory (DFT) calculations.


2016 ◽  
Vol 18 (42) ◽  
pp. 29249-29257 ◽  
Author(s):  
Chengqian Yuan ◽  
Haiming Wu ◽  
Meiye Jia ◽  
Peifeng Su ◽  
Zhixun Luo ◽  
...  

Utilizing dispersion-corrected density functional theory (DFT) calculations, we demonstrate the weak intermolecular interactions of phenylenediamine dimer (pdd) clusters, emphasizing the local lowest energy structures and decomposition of interaction energies by natural bond orbital (NBO) and atoms in molecule (AIM) analyses.


2020 ◽  
Vol 17 (7) ◽  
pp. 2890-2896
Author(s):  
Yanhong Dong ◽  
Ning-Ning Wei ◽  
Liguo Gao ◽  
Juanyuan Hao ◽  
Dan Vasilescu ◽  
...  

The sensing mechanism of luminescent metal-organic framework [Zn(3-tzba)(2,2′-bipy)(H2O)] -3H2O for formaldehyde detection was explored by using density functional theory and time-dependent density functional theory methods. Our investigation found that luminescent metal-organic framework [Zn(3-tzba)(2,2′-bipy)(H2O)] • 3H2O is able to interact with formaldehyde through hydrogen bonding to the framework. The luminescent mechanism of the hydrogen-bonded complex is photo-induced electron transfer; while the luminescent mechanism of luminescent metal-organic framework [Zn(3-tzba)(2,2′-bipy)(H2O)]-3H2O is ligand-to-ligand charge transfer. The intermolecu-lar hydrogen bond was found to be stronger in the excited state than that in the ground state by analyzing the geometry nuclear magnetic resonance, binding energy and infrared spectrum in different electronic states. Calculated fluorescence radiative rate coefficient and internal conversion rate coefficient qualitatively indicated a reduced radiative process and an enhanced internal conversion process of the hydrogen-bonded complex. The hydrogen-bonded complex exhibits luminescence weakening or even quenching due to the enhancement of the intermolecular hydrogen bond in the excited state compare with luminescent metal-organic framework [Zn(3-tzba)(2,2′-bipy)(H2O)]-3H2O. The variable luminescence demonstrated the potential of luminescent metal-organic framework [Zn(3-tzba)(2,2′-bipy)(H2O)]-3H2O as luminescent sensor for formaldehyde detection.


Sign in / Sign up

Export Citation Format

Share Document