Turbulent liquid-sodium flow induces magnetic dipole in a laboratory analogue of the geodynamo

Physics Today ◽  
2006 ◽  
Vol 59 (2) ◽  
pp. 13-15 ◽  
Author(s):  
Bertram Schwarzschild
2006 ◽  
Vol 176 (9) ◽  
pp. 965
Author(s):  
B.A. Knyazev ◽  
I.A. Kotel'nikov ◽  
A.A. Tyutin ◽  
V.S. Cherkasskii

1970 ◽  
Author(s):  
Ralph M. Singer ◽  
Robert E. Holtz
Keyword(s):  

Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


Sign in / Sign up

Export Citation Format

Share Document