A Liquid Metal Flow Between Two Coaxial Cylinders System

Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.

Author(s):  
Nariman Ashrafi ◽  
Habib Karimi Haghighi

The effects of nonlinearities on the stability are explored for shear thickening fluids in the narrow-gap limit of the Taylor-Couette flow. It is assumed that shear-thickening fluids behave exactly as opposite of shear thinning ones. A dynamical system is obtained from the conservation of mass and momentum equations which include nonlinear terms in velocity components due to the shear-dependent viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of Couette flow becomes higher as the shear-thickening effects increases. Similar to the shear thinning case, the Taylor vortex structure emerges in the shear thickening flow, however they quickly disappear thus bringing the flow back to the purely azimuthal flow. Naturally, one expects shear thickening fluids to result in inverse dynamical behavior of shear thinning fluids. This study proves that this is not the case for every point on the bifurcation diagram.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1984 ◽  
Vol 27 (10) ◽  
pp. 2403 ◽  
Author(s):  
R. C. DiPrima ◽  
P. M. Eagles ◽  
B. S. Ng

1996 ◽  
Vol 328 ◽  
pp. 161-176 ◽  
Author(s):  
R. R. Kerswell ◽  
A. M. Soward

The upper bound on momentum transport in the turbulent regime of plane Couette flow is considered. Busse (1970) obtained a bound from a variational formulation based on total energy conservation and the mean momentum equation. Two-dimensional asymptotic solutions of the resulting Euler-Lagrange equations for the system were obtained in the large-Reynolds-number limit. Here we make a toroidal poloidal decomposition of the flow and impose an additional power integral constraint, which cannot be satisfied by two-dimensional flows. Nevertheless, we show that the additional constraint can be met by only small modifications to Busse's solution, which leaves his momentum transport bound unaltered at lowest order. On the one hand, the result suggests that the addition of further integral constraints will not significantly improve bound estimates. On the other, our optimal solution, which possesses a weak spanwise roll in the outermost of Busse's nested boundary layers, appears to explain the three-dimensional structures observed in experiments. Only in the outermost boundary layer and in the main stream is the solution three-dimensional. Motion in the thinner layers remains two-dimensional characterized by streamwise rolls.


Author(s):  
Nariman Ashrafi

The effect of shear thinning on the stability of the Taylor-Couette flow (TCF) is explored for a Carreau-Bird fluid in the narrow-gap limit to simulate journal bearings in general. Also considered is the changing eccentricity to cover a wide range of applied situations such as bearings and even articulation of human joints. Here, a low-order dynamical system is obtained from the conservation of mass and momentum equations. In comparison with the Newtonian system, the present equations include additional nonlinear coupling in the velocity components through the viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of the base (Couette) flow becomes lower s the shear-thinning effect increases. Similar to Newtonian fluids, there is an exchange of stability between the Couette and Taylor vortex flows. However, unlike the Newtonian model, the Taylor vortex cellular structure loses its stability in turn as the Taylor number reaches a critical value. At this point, A Hopf bifurcation emerges, which exists only for shear-thinning fluids. Variation of stresses in the narrow gap has been evaluated with significant applications in the non-Newtonian lubricant.


Author(s):  
Nariman Ashrafi ◽  
Habib Karimi Haghighi

The effects of nonlinearities on the stability are explored for shear thickening fluids in the narrow-gap limit of the Taylor-Couette flow. A dynamical system is obtained from the conservation of mass and momentum equations which include nonlinear terms in velocity components due to the shear-dependent viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of Couette flow becomes higher as the shear-thickening effects increases. Similar to the shear thinning case, the Taylor vortex structure emerges in the shear thickening flow; however they quickly disappear thus bringing the flow back to the purely azimuthal flow. Naturally, one expects shear thickening fluids to result in inverse dynamical behavior of shear thinning fluids. This study proves that this is not the case for every point on the bifurcation diagram.


1981 ◽  
Vol 108 ◽  
pp. 19-42 ◽  
Author(s):  
S. Carmi ◽  
J. I. Tustaniwskyj

The linear stability of an extensively modulated cylindrical Couette flow is investigated in the finite-gap range. A closed form analytic solution is obtained for the basic unsteady flow after modulation is introduced through the boundary conditions. The general linear perturbation equations for three-dimensional disturbances are then derived and subsequently solved using the Galerkin method with the stability analysed by the Floquet theory. Modulation is found to destabilize the flow in most cases and results compare very favourably with the ones obtained experimentally. Stabilization is possible only for some cases of outer cylinder modulation.


1977 ◽  
Vol 81 (4) ◽  
pp. 641-655 ◽  
Author(s):  
K. C. Chung ◽  
K. N. Astill

A linear stability analysis is presented for flow between concentric cylinders when a fully developed axial flow is present. Small perturbations are assumed to be nonaxisymmetric. This leads to an eigenvalue problem with four eigenvalues: the critical Taylor number, an amplification factor and two wavenumbers. The presence of the tangential wavenumber permits prediction of the stability of spiral flow. This made it possible to model the flow more accurately and to extend the range of calculations to higher axial Reynolds numbers than had previously been attainable. Calculations were carried out for radius ratios from 0·95 to 0·1, Reynolds numbers as large as 300 and cases with co-rotation and counter-rotation of the cylinders.


Sign in / Sign up

Export Citation Format

Share Document