Combined density functional/polarizable continuum model study of magnetochiral birefringence: Can theory and experiment be brought to agreement?

2006 ◽  
Vol 125 (23) ◽  
pp. 234105 ◽  
Author(s):  
Branislav Jansík ◽  
Antonio Rizzo ◽  
Luca Frediani ◽  
Kenneth Ruud ◽  
Sonia Coriani
2021 ◽  
Vol 129 (5) ◽  
pp. 599
Author(s):  
С.Н. Цеплина ◽  
E.E. Цеплин

Optical absorption spectra of 1,2-naphthoquinone in non-polar (n-hexane) and polar (water) solvents were obtained. It is shown that the use of quantum chemical calculations based on time-dependent density functional theory (TDDFT B3LYP/6-311+G(d, p)) with the polarizable continuum model (PCM) for calculating 1,2-naphthoquinone in a solution of n-hexane and hydrogen complex of 1,2-naphthoquinone with two water molecules in an aqueous medium describes well the shifts of the absorption bands of 1,2-naphthoquinone in a water solution compared to a solution in n-hexane. Based on the analysis of deviations of the calculated band shifts from the experimental ones, the question of the formation of 1,2-naphthoquinone hydrogen complexes with n water molecules (n = 1-4) in an aqueous solution is considered.


2016 ◽  
Vol 18 (32) ◽  
pp. 22047-22061 ◽  
Author(s):  
Yoshio Nishimoto ◽  
Dmitri G. Fedorov

The electronic gap in proteins is analyzed in detail, and it is shown that FMO-DFTB/PCM is efficient and accurate in describing the molecular structure of proteins in solution.


2019 ◽  
Author(s):  
Yoshio Nishimoto

In this study, excited-state free energies and geometries were efficiently evaluated using a linear-response time-dependent long-range corrected density-functional tight-binding method integrated with the polarizable continuum model (TD-LC-DFTB/PCM). Although the LC-DFTB method required the evaluation of the exchange-type term, which was moderately computationally expensive, a single evaluation of the excited-state gradient for a system consisting of more than 1000 atoms in a vacuum was completed within 30 minutes using one CPU core. Benchmark calculations were conducted for 3-hydroxy avone, which exhibits dual emission: the absorption and enol-form emission wavelengths calculated by TD-LC-DFTB/PCM agreed well with those predicted based on density functional theory using a long-range corrected functional; however, there was a large error in the predicted keto-form emission wavelength. Further benchmark calculations for more than 20 molecules indicated that the conventional TD-DFTB method underestimated the absorption and 0-0 transition energies compared with those which were measured experimentally while the TD-LC-DFTB method systematically overestimated these metrics. Nevertheless, the agreement of the results of the TD-LC-DFTB method with those obtained by the CAM-B3LYP method demonstrates the potential of the TD-LC-DFTB/PCM method. Moreover, changing the range-separation parameter to 0.15 minimized this deviation.<br>


Sign in / Sign up

Export Citation Format

Share Document