A finite strain isotropic/kinematic hardening model for springback simulation of sheet metals

2007 ◽  
Author(s):  
Ivaylo N. Vladimirov ◽  
Stefanie Reese
2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2000 ◽  
Author(s):  
M. Brunet ◽  
F. Morestin ◽  
S. Godereaux

Abstract An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metals forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen allows to determined numerically the strain-stress behaviour but without Finite Element Analysis Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths.


2020 ◽  
Vol 10 (8) ◽  
pp. 2834
Author(s):  
Mohsen Saleh Asheghabadi ◽  
Xiaohui Cheng

In this study, a soil–tunnel model for clay under earthquake loading is analyzed, using finite element methods and a kinematic hardening model with the Von Mises failure criterion. The results are compared with those from the linear elastic–perfectly plastic Mohr–Coulomb model. The latter model does not consider the stiffness degradation caused by imposing cyclic loading and unloading to the soil, whereas the kinematic hardening model can simulate this stiffness degradation. The parameters of the kinematic hardening model are calibrated based on the results of experimental cyclic tests and finite element simulation. Here, two methods—one using data from cyclic shear tests, and the other a new method using undrained cyclic triaxial tests—are used to calibrate the parameters. The parameters investigated are the peak ground acceleration (PGA), tunnel lining thickness, tunnel shape, and tunnel embedment depth, all of which have an effect on the resistance of the shallow tunnel to the stresses and deformations caused by the surrounding clay soils. The results show that unlike traditional models, the nonlinear kinematic hardening model can predict the response reasonably well, and it is able to create the hysteresis loops and consider the soil stiffness degradation under the seismic loads.


Sign in / Sign up

Export Citation Format

Share Document