Describing the non-saturating cyclic hardening behavior with a newly developed kinematic hardening model and its application in springback prediction of DP sheet metals

2015 ◽  
Vol 215 ◽  
pp. 151-158 ◽  
Author(s):  
Jun Chen ◽  
Yuzhong Xiao ◽  
Wei Ding ◽  
Xinhai Zhu
2007 ◽  
Author(s):  
Hang Shawn Cheng ◽  
Wonoh Lee ◽  
Jian Cao ◽  
Mark Seniw ◽  
Hui-ping Wang ◽  
...  

Author(s):  
Hyun-Woo Jung ◽  
Yun-Jae Kim ◽  
Yukio Takahashi ◽  
Kamran Nikbin ◽  
Catrin M. Davies ◽  
...  

Abstract In this study, to determine appropriate cyclic hardening model for simulating creep-fatigue crack growth, sensitivity of hardening model on global/local deformation behavior during creep-fatigue crack growth is studied using finite element (FE) debonding analysis method. Three hardening models derived from tensile stress-strain curve to treat large strain near crack are considered in this study: isotropic hardening model, kinematic hardening model and combined hardening model. Simulation results indicate that cyclic hardening model does not make large difference in global deformation behavior but make difference in local deformation behavior. The effect of hardening model on inelastic strain and stress near crack are discussed in detail.


2009 ◽  
Vol 25 (5) ◽  
pp. 942-972 ◽  
Author(s):  
Jian Cao ◽  
Wonoh Lee ◽  
Hang Shawn Cheng ◽  
Mark Seniw ◽  
Hui-Ping Wang ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 511 ◽  
Author(s):  
Baara ◽  
Baharudin ◽  
Anuar ◽  
Ismail

Commercial finite element software that uses default hardening model simulation is not able to predict the final shape of sheet metal that changes its dimensions after removing the punch due to residual stress (strain recovery or springback). We aimed to develop a constitutive hardening model to more accurately simulate this final shape. The strain recovery or balancing of residual stress can be determined using the isotropic hardening of the original elastic modulus and the hardening combined with varying degrees of elastic modulus degradation and the size of the yield surfaces. The Chord model was modified with one-yield surfaces. The model was combined with nonlinear isotropic–kinematic hardening models and implemented in Abaqus user-defined material subroutine for constitutive model (UMAT). The Numisheet 2011 benchmark for springback prediction for DP780 high-strength steel sheet was selected to verify the new model, the Chord model, the Quasi Plastic-Elastic (QPE) model, and the default hardening model using Abaqus software. The simulation of U-draw bending from the Numisheet 2011 benchmark was useful for comparing the proposed model with experimental measurements. The results from the simulation of the model showed that the new model more accurately predicts springback than the other models.


Author(s):  
Koji Iwata ◽  
Yasuhisa Karakida ◽  
Chuanrong Jin ◽  
Hitoshi Nakamura ◽  
Naoto Kasahara

Carbon steel STS410 (JIS Standard), which is widely used for high pressure piping components, exhibits cyclic hardening under repeated loading. Extreme seismic loading can cause repetitive large strains, eventually leading to the failure of components. For failure assessment of such components, inelastic analyses using cyclic plasticity constitutive models are needed. In this paper, a multilayer kinematic hardening model for cyclic plasticity, equipped with a set of standard stress-strain characteristics, is developed for STS410 under isothermal condition of various temperatures. This model can express not only the nonlinearity of stress-strain relations, but cyclic hardening of a material by introducing a generic stress-strain relation composed of a combination of monotonic and steady state cyclic stress-strain curves. Finite element large deformation elastic-plastic analyses with this model are conducted for a cyclic in-plane bending test of an elbow. The proposed constitutive model predicted well characteristic features of global deformation and local strain behaviors of the elbow.


2015 ◽  
Vol 817 ◽  
pp. 8-13 ◽  
Author(s):  
Qiang Ren ◽  
Tian Xia Zou ◽  
Da Yong Li

The UOE process is an effective approach for manufacturing the line pipes used in oil and gas transportation. During the UOE process, a steel plate is crimped along its edges, pressed into a circular pipe with an open-seam by the successively U-O forming stages. Subsequently, the open-seam is closed and welded. Finally, the welded pipe is expanded to obtain a perfectly round shape. In particular, during the O-forming stage the plate is suffered from distinct strain reversal which leads to the Bauschinger effect, i.e., a reduced yield stress at the start of reverse loading following forward strain. In the finite element simulation of plate forming, the material hardening model plays an important role in the springback prediction. In this study, the mechanical properties of API X90 grade steel are obtained by a tension-compression test. Three popular hardening models (isotropic hardening, kinematic hardening and combined hardening) are employed to simulate the CUO forming process. A deep analysis on the deformation and springback behaviors of the plate in each forming stage is implemented. The formed configurations from C-forming to U-forming are almost identical with three hardening models due to the similar forward hardening behaviors. Since the isotropic hardening model cannot represent the Bauschinger effect, it evaluates the higher reverse stress and springback in the O-forming stage which leads to a failure prediction of a zero open-seam pipe. On the contrary, the kinematic hardening model overestimates the Bauschinger effect so that predicts the larger open-seam value. Specifically, the simulation results using the combined hardening model show good agreement in geometric configurations with the practical measurements.


Author(s):  
Shree Krishna ◽  
Tasnim Hassan

A set of cyclic and ratcheting experimental responses obtained under proportional to various degrees of nonproportional loading cycles are simulated using the modified Chaboche model in its rate-independent and rate-dependent forms. Features of the modified Chaboche nonlinear-kinematic hardening model needed for simulating cyclic hardening-softening, cyclic relaxation and ratcheting responses under uniaxial and multiaxial loading are elaborated. Significance of “rate-dependent” and novel “back stress shift” modeling features in improving the hysteresis loop and ratcheting rate simulations are demonstrated. Influence of the isotropic and kinematic hardening parameters in improving the multiaxial ratcheting response simulation by the modified Chaboche model are illustrated.


Sign in / Sign up

Export Citation Format

Share Document