Monte Carlo simulations of effective electrical conductivity in short-fiber composites

2008 ◽  
Vol 103 (1) ◽  
pp. 014910 ◽  
Author(s):  
T. Zhang ◽  
Y. B. Yi
Author(s):  
Zhengzheng Hu ◽  
Ralph C. Smith ◽  
Nathanial Burch ◽  
Michael Hays ◽  
William S. Oates

Macro Fiber Composites (MFCs), comprised of PZT fibers, are being considered for a variety of applications due to their flexibility and relatively low production costs. Like other PZT actuators, MFCs also exhibit hysteresis and constitutive nonlinearities that must be characterized in models and control designs to achieve the full potential. Here we use an Euler-Bernoulli beam model coupled with the homogenized energy strain model to predict the structural/hysteretic response of a thin cantilever beam with an MFC patch attached during a series of frequency sweep experiments. Optimization routines are employed to optimized both MFC parameters and beam parameters using a subset of displacement data. The posterior probability distribution of each model parameter is estimated using Markov Chain Monte Carlo simulations. Finally, we present model predictions with quantified uncertainties.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document