Dynamical Equations for Regge Theory with Unitarity and Crossing

Author(s):  
P. W. Johnson ◽  
R. L. Warnock
Author(s):  
S. Nakahara ◽  
D. M. Maher

Since Head first demonstrated the advantages of computer displayed theoretical intensities from defective crystals, computer display techniques have become important in image analysis. However the computational methods employed resort largely to numerical integration of the dynamical equations of electron diffraction. As a consequence, the interpretation of the results in terms of the defect displacement field and diffracting variables is difficult to follow in detail. In contrast to this type of computational approach which is based on a plane-wave expansion of the excited waves within the crystal (i.e. Darwin representation ), Wilkens assumed scattering of modified Bloch waves by an imperfect crystal. For localized defects, the wave amplitudes can be described analytically and this formulation has been used successfully to predict the black-white symmetry of images arising from small dislocation loops.


2019 ◽  
Vol 13 (4) ◽  
pp. 740-745
Author(s):  
S. I. Senashov ◽  
I. L. Savostyanova

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Joshua Sandor

Abstract The Operator Product Expansion is a useful tool to represent correlation functions. In this note we extend Conformal Regge theory to provide an exact OPE representation of Lorenzian four-point correlators in conformal field theory, valid even away from Regge limit. The representation extends convergence of the OPE by rewriting it as a double integral over continuous spins and dimensions, and features a novel “Regge block”. We test the formula in the conformal fishnet theory, where exact results involving nontrivial Regge trajectories are available.


2016 ◽  
Vol 31 (26) ◽  
pp. 1630043 ◽  
Author(s):  
Peter West

I begin with some memories of Abdus Salam who was my PhD supervisor. After reviewing the theory of nonlinear realisations and Kac–Moody algebras, I explain how to construct the nonlinear realisation based on the Kac–Moody algebra [Formula: see text] and its vector representation. I explain how this field theory leads to dynamical equations which contain an infinite number of fields defined on a space–time with an infinite number of coordinates. I then show that these unique dynamical equations, when truncated to low level fields and the usual coordinates of space–time, lead to precisely the equations of motion of 11-dimensional supergravity theory. By taking different group decompositions of [Formula: see text] we find all the maximal supergravity theories, including the gauged maximal supergravities, and as a result the nonlinear realisation should be thought of as a unified theory that is the low energy effective action for type II strings and branes. These results essentially confirm the [Formula: see text] conjecture given many years ago.


Sign in / Sign up

Export Citation Format

Share Document