regge limit
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Theresa Abl ◽  
Martin Sprenger

Abstract The multi-Regge limit of scattering amplitudes in strongly-coupled $$ \mathcal{N} $$ N = 4 super Yang-Mills is described by the large mass limit of a set of thermodynamic Bethe ansatz (TBA) equations. A non-trivial remainder function arises in this setup in certain kinematical regions due to excitations of the TBA equations which appear during the analytic continuation into these kinematical regions. So far, these analytic continuations were carried out on a case-by-case basis for the six- and seven-gluon remainder function. In this note, we show that the set of possible excitations appearing in any analytic continuation in the multi-Regge limit for any number of particles is rather constrained. In particular, we show that the BFKL eigenvalue of any possible Reggeon bound state is a multiple of the two-Reggeon BFKL eigenvalue appearing in the six-gluon case.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lance J. Dixon ◽  
Yu-Ting Liu ◽  
Julian Miczajka

Abstract We compute all 2 → 5 gluon scattering amplitudes in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory in the multi-Regge limit that is sensitive to the non-trivial (“long”) Regge cut. We provide the amplitudes through four loops and to all logarithmic accuracy at leading power, in terms of single-valued multiple polylogarithms of two variables. To obtain these results, we leverage the function-level results for the amplitudes in the Steinmann cluster bootstrap. To high powers in the series expansion in the two variables, our results agree with the recently conjectured all-order central emission vertex used in the Fourier-Mellin representation of amplitudes in multi-Regge kinematics. Our results therefore provide a resummation of the Fourier-Mellin residues into single-valued polylogarithms, and constitute an important cross-check between the bootstrap approach and the all-orders multi-Regge proposal.


2021 ◽  
pp. 407-433
Author(s):  
Jochen Bartels ◽  
Alex Prygarin
Keyword(s):  

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Keun-Young Kim ◽  
Kyung-Sun Lee ◽  
Mitsuhiro Nishida

Abstract We study a holographic construction of conformal blocks in the Regge limit of four-point scalar correlation functions by using coordinates of the two-sided Rindler-AdS black hole. As a generalization of geodesic Witten diagrams, we construct diagrams with four external scalar fields in the Rindler-AdS black hole by integrating over two half-geodesics between the centers of Penrose diagrams and points at the AdS boundary. We demonstrate that late-time behaviors of the diagrams coincide with the Regge behaviors of conformal blocks. We also point out their relevance with the pole-skipping phenomena by showing that the near-horizon analysis of symmetric traceless fields with any integer spin in the Rindler-AdS black hole can capture the Regge behaviors of conformal blocks.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Miguel F. Paulos

Abstract We derive new crossing-symmetric dispersion formulae for CFT correlators restricted to the line. The formulae are equivalent to the sum rules implied by what we call master functionals, which are analytic extremal functionals which act on the crossing equation. The dispersion relations provide an equivalent formulation of the constraints of the Polyakov bootstrap and hence of crossing symmetry on the line. The built in positivity properties imply simple and exact lower and upper bounds on the values of general CFT correlators on the Euclidean section, which are saturated by generalized free fields. Besides bounds on correlators, we apply this technology to determine new universal constraints on the Regge limit of arbitrary CFTs and obtain very simple and accurate representations of the 3d Ising spin correlator.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Nejc Čeplak ◽  
Marcel R. R. Hughes

Abstract We examine the Regge limit of holographic 4-point correlation functions in AdS3× S3 involving two heavy and two light operators. In this kinematic regime such correlators can be reconstructed from the bulk phase shift accumulated by the light probe as it traverses the geometry dual to the heavy operator. We work perturbatively — but to arbitrary orders — in the ratio of the heavy operator’s conformal dimension to the dual CFT2’s central charge, thus going beyond the low order results of [1] and [2]. In doing so, we derive all-order relations between the bulk phase shift and the Regge limit OPE data of a class of heavy-light multi-trace operators exchanged in the cross-channel. Furthermore, we analyse two examples for which the relevant 4-point correlators are known explicitly to all orders: firstly the case of heavy operators dual to AdS3 conical defect geometries and secondly the case of non-trivial smooth geometries representing microstates of the two-charge D1-D5 black hole.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Joshua Sandor

Abstract The Operator Product Expansion is a useful tool to represent correlation functions. In this note we extend Conformal Regge theory to provide an exact OPE representation of Lorenzian four-point correlators in conformal field theory, valid even away from Regge limit. The representation extends convergence of the OPE by rewriting it as a double integral over continuous spins and dimensions, and features a novel “Regge block”. We test the formula in the conformal fishnet theory, where exact results involving nontrivial Regge trajectories are available.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Deeksha Chandorkar ◽  
Subham Dutta Chowdhury ◽  
Suman Kundu ◽  
Shiraz Minwalla

Abstract We study four-point functions of scalars, conserved currents, and stress tensors in a conformal field theory, generated by a local contact term in the bulk dual description, in two different causal configurations. The first of these is the standard Regge configuration in which the chaos bound applies. The second is the ‘causally scattering configuration’ in which the correlator develops a bulk point singularity. We find an expression for the coefficient of the bulk point singularity in terms of the bulk S matrix of the bulk dual metric, gauge fields and scalars, and use it to determine the Regge scaling of the correlator on the causally scattering sheet in terms of the Regge growth of this S matrix. We then demonstrate that the Regge scaling on this sheet is governed by the same power as in the standard Regge configuration, and so is constrained by the chaos bound, which turns out to be violated unless the bulk flat space S matrix grows no faster than s2 in the Regge limit. It follows that in the context of the AdS/CFT correspondence, the chaos bound applied to the boundary field theory implies that the S matrices of the dual bulk scalars, gauge fields, and gravitons obey the Classical Regge Growth (CRG) conjecture.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
António Antunes ◽  
Miguel S. Costa ◽  
Tobias Hansen ◽  
Aaditya Salgarkar ◽  
Sourav Sarkar

Abstract We derive an optical theorem for perturbative CFTs which computes the double discontinuity of conformal correlators from the single discontinuities of lower order correlators, in analogy with the optical theorem for flat space scattering amplitudes. The theorem takes a purely multiplicative form in the CFT impact parameter representation used to describe high-energy scattering in the dual AdS theory. We use this result to study four-point correlation functions that are dominated in the Regge limit by the exchange of the graviton Regge trajectory (Pomeron) in the dual theory. At one-loop the scattering is dominated by double Pomeron exchange and receives contributions from tidal excitations of the scattering states which are efficiently described by an AdS vertex function, in close analogy with the known Regge limit result for one-loop string scattering in flat space at finite string tension. We compare the flat space limit of the conformal correlator to the flat space results and thus derive constraints on the one-loop vertex function for type IIB strings in AdS and also on general spinning tree level type IIB amplitudes in AdS.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Stephen G. Naculich

Abstract We examine in detail the structure of the Regge limit of the (nonplanar) $$ \mathcal{N} $$ N = 4 SYM four-point amplitude. We begin by developing a basis of color factors Cik suitable for the Regge limit of the amplitude at any loop order, and then calculate explicitly the coefficients of the amplitude in that basis through three-loop order using the Regge limit of the full amplitude previously calculated by Henn and Mistlberger. We compute these coefficients exactly at one loop, through $$ \mathcal{O}\left({\upepsilon}^2\right) $$ O ϵ 2 at two loops, and through $$ \mathcal{O}\left({\upepsilon}^0\right) $$ O ϵ 0 at three loops, verifying that the IR-divergent pieces are consistent with (the Regge limit of) the expected infrared divergence structure, including a contribution from the three-loop correction to the dipole formula. We also verify consistency with the IR-finite NLL and NNLL predictions of Caron-Huot et al. Finally we use these results to motivate the conjecture of an all-orders relation between one of the coefficients and the Regge limit of the $$ \mathcal{N} $$ N = 8 supergravity four-point amplitude.


Sign in / Sign up

Export Citation Format

Share Document