Thermal Conduction in Solids

Physics Today ◽  
1978 ◽  
Vol 31 (4) ◽  
pp. 56-57 ◽  
Author(s):  
R. Berman ◽  
Paul G. Klemens
Keyword(s):  
2016 ◽  
Vol 52 (1-2) ◽  
pp. 199-208 ◽  
Author(s):  
N. E. Molevich ◽  
D. S. Ryashchikov ◽  
D. I. Zavershinskiy

Author(s):  
Hwan Soo Dow ◽  
Moonkyong Na ◽  
Yeon Wook Jung ◽  
Seung Geun Jo ◽  
Jung Woo Lee

Author(s):  
Zhongyuan Feng ◽  
Ninshu Ma ◽  
Wangnan Li ◽  
Kunio Narasaki ◽  
Fenggui Lu

A Correction to this paper has been published: https://doi.org/10.1007/s00170-020-06437-w


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Fogliano ◽  
Benjamin Besga ◽  
Antoine Reigue ◽  
Laure Mercier de Lépinay ◽  
Philip Heringlake ◽  
...  

AbstractCooling down nanomechanical force probes is a generic strategy to enhance their sensitivities through the concomitant reduction of their thermal noise and mechanical damping rates. However, heat conduction becomes less efficient at low temperatures, which renders difficult to ensure and verify their proper thermalization. Here we implement optomechanical readout techniques operating in the photon counting regime to probe the dynamics of suspended silicon carbide nanowires in a dilution refrigerator. Readout of their vibrations is realized with sub-picowatt optical powers, in a situation where less than one photon is collected per oscillation period. We demonstrate their thermalization down to 32 ± 2 mK, reaching very large sensitivities for scanning probe force sensors, 40 zN Hz−1/2, with a sensitivity to lateral force field gradients in the fN m−1 range. This opens the road toward explorations of the mechanical and thermal conduction properties of nanoresonators at minimal excitation level, and to nanomechanical vectorial imaging of faint forces at dilution temperatures.


Sign in / Sign up

Export Citation Format

Share Document