Valence-bond description of chemical reactions on Born–Oppenheimer molecular dynamics trajectories

2009 ◽  
Vol 130 (15) ◽  
pp. 154309 ◽  
Author(s):  
Nao Noguchi ◽  
Haruyuki Nakano
2021 ◽  
Vol 125 (34) ◽  
pp. 18588-18596
Author(s):  
Lorena Alzate-Vargas ◽  
Samuel M. Blau ◽  
Evan Walter Clark Spotte-Smith ◽  
Srikanth Allu ◽  
Kristin A. Persson ◽  
...  

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 294-308
Author(s):  
William A. Angermeier ◽  
Thomas G. White

Wave packet molecular dynamics (WPMD) has recently received a lot of attention as a computationally fast tool with which to study dynamical processes in warm dense matter beyond the Born–Oppenheimer approximation. These techniques, typically, employ many approximations to achieve computational efficiency while implementing semi-empirical scaling parameters to retain accuracy. We investigated three of the main approximations ubiquitous to WPMD: a restricted basis set, approximations to exchange, and the lack of correlation. We examined each of these approximations in regard to atomic and molecular hydrogen in addition to a dense hydrogen plasma. We found that the biggest improvement to WPMD comes from combining a two-Gaussian basis with a semi-empirical correction based on the valence-bond wave function. A single parameter scales this correction to match experimental pressures of dense hydrogen. Ultimately, we found that semi-empirical scaling parameters are necessary to correct for the main approximations in WPMD. However, reducing the scaling parameters for more ab-initio terms gives more accurate results and displays the underlying physics more readily.


ChemInform ◽  
2010 ◽  
Vol 24 (50) ◽  
pp. no-no
Author(s):  
R. M. WHITNELL ◽  
K. R. WILSON

Sign in / Sign up

Export Citation Format

Share Document