On the application of a generalized dressing method to the integration of variable-coefficient coupled Hirota equations

2009 ◽  
Vol 50 (11) ◽  
pp. 113507 ◽  
Author(s):  
Ting Su ◽  
Hui-Hui Dai ◽  
Xianguo Geng
2012 ◽  
Vol 19 (04) ◽  
pp. 1250028
Author(s):  
TING SU ◽  
HUIHUI DAI ◽  
XIAN GUO GENG

N-coupled nonlinear Schrödinger (NLS) equations have been proposed to describe N-pulse simultaneous propagation in optical fibers. When the fiber is nonuniform, N-coupled variable-coefficient NLS equations can arise. In this paper, a family of N-coupled integrable variable-coefficient NLS equations are studied by using a generalized version of the dressing method. We first extend the dressing method to the versions with (N + 1) × (N + 1) operators and (2N + 1) × (2N + 1) operators. Then, we obtain three types of N-coupled variable-coefficient equations (N-coupled NLS equations, N-coupled Hirota equations and N-coupled high-order NLS equations). Then, the compatibility conditions are given, which insure that these equations are integrable. Finally, the explicit solutions of the new integrable equations are obtained.


Author(s):  
Ting Su ◽  
Junhong Yao ◽  
Yanan Huang

Based on the generalized dressing method, we propose a new integrable variable coefficient Spin-1 Gross–Pitaevskii equations and derive their Lax pair. Using separation of variables, we have derived explicit solutions of the equations. In order to analyze the characteristic of derived solution, the graphical wave of the solutions is plotted with the aid of Matlab.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Ting Su ◽  
Hui Hui Dai

Based on the generalized dressing method, we propose a new integrable variable-coefficient 2+1-dimensional long wave-short wave equation and derive its Lax pair. Using separation of variables, we have derived the explicit solutions of the equation. With the aid of Matlab, the curves of the solutions are drawn.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


Sign in / Sign up

Export Citation Format

Share Document