Oxidation kinetics of YBa2Cu3O7−xthin films in the presence of atomic oxygen and molecular oxygen byin‐situresistivity measurements

1991 ◽  
Vol 69 (10) ◽  
pp. 7189-7201 ◽  
Author(s):  
K. Yamamoto ◽  
B. M. Lairson ◽  
J. C. Bravman ◽  
T. H. Geballe
2020 ◽  
Vol 850 ◽  
pp. 48-53
Author(s):  
Svetlana Chornaja ◽  
Svetlana Zhizhkuna ◽  
Jevgenija Vladiko ◽  
Reinis Drunka ◽  
Aija Krūmiņa

1.25 – 5wt%Pt/Al2O3, 1.25 – 5wt%Pd/Al2O3, 1wt%Pd/TiO2, 1 – 5wt%Pd/TiO2-NF, 1.25wt%Pt+1.25wt%Pd/Al2O3, 5wt%Pt/SiO2, 5wt%Pt/C catalysts were synthesised and tested in the selective oxidation of 1,2-propanediol by molecular oxygen. It was found that all catalysts were active in alkaline water solutions; lactic acid was obtained as the main product of the reaction. The conversion of 1,2-propandiol and the yield of lactic acid depended on the content of active metal in the catalysts. The most active for the oxidation of 1,2-propandiol were palladium-containing catalysts supported on TiO2 nanofibers (Pd/TiO2-NF). The highest 1,2-propanediol conversion (100 %) and lactic acid yield (96 %) were obtained using the 5wt%Pd/TiO2-NF catalyst at the following oxidation parameters: c0(1,2-propanediol) = 0.3 mol/L, P(O2) = 1 atm, n (1,2-propanediol)/n (Pd) = 500 mol/mol, t = 60 °C, c0(NaOH) = 1.5 mol/L.


1991 ◽  
Vol 230 ◽  
Author(s):  
K. Yamamoto ◽  
B. M. Lairson ◽  
J. C. Bravman ◽  
T. H. Geballe

AbstractThe kinetics of oxidation in Yba2Cu3O7-x thin films in the presence of molecular and atomic oxygen ambients have been studied. The resistivity of c-axis, a-axis, and mixed a+c axis oriented films, deposited in-situ by off-axis magnetron sputtering, was measured as a function of time subsequent to a change in the ambient conditions. The oxidation process is shown to be thermally activated and can be characterized by a diffusion model with an activation energy which varies from approximately 1.2eV in the presence of molecular oxygen to 0.6eV for a flux of 2×1015 oxygen atoms/cm2sec. In both cases, diffusivity is found to be insensitive to oxygen stoichiometry, but the rate of oxidation is found to be sensitive to the microstructure and orientation of the films.


Sign in / Sign up

Export Citation Format

Share Document