scholarly journals Distinctive features of ion-acoustic solitons in electron-positron-ion superdense magnetoplasmas with degenerate electrons and positrons

2010 ◽  
Vol 17 (9) ◽  
pp. 092304 ◽  
Author(s):  
M. Akbari-Moghanjoughi
2013 ◽  
Vol 79 (5) ◽  
pp. 569-576 ◽  
Author(s):  
MUSTAPHA BACHA ◽  
MOULOUD TRIBECHE

AbstractUsing the reductive perturbation approach, dust–ion acoustic solitons and double layers (DLs) have been studied in a dust–electron–positron–ion (d-e-p-i) plasma composed of q-distributed electrons and positrons, warm fluid ions, and a fraction of immobile dust grains. Existence domains of either solitary waves or DLs are presented and their parametric dependence determined. It is found that particle non-extensivity, dust concentration and positron concentration may drastically affect these existence domains and may play a key role in defining the polarity of these localized structures. Our results should assist in interpreting the nonlinear structures that may occur in astrophysical environments.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 563-567 ◽  
Author(s):  
Jianyong Wang ◽  
Ying Zeng ◽  
Zufeng Liang ◽  
Yani Xu ◽  
Yuanxiang Zhang

Abstract In this work, we are concerned with the ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons. By using the reductive perturbation method, the Korteweg-de Vries equation is derived from the governing equations of ion acoustic waves. An interesting soliton-cnoidal wave solution of the Korteweg-de Vries equation and its quasi-soliton behaviour are presented. The influence of electron superthermality, positron superthermality and positron concentration ratio on characteristics of the quasi-soliton is confirmed to be significant.


2013 ◽  
Vol 79 (5) ◽  
pp. 817-823 ◽  
Author(s):  
ATA-UR RAHMAN ◽  
S. ALI ◽  
A. MUSHTAQ ◽  
A. QAMAR

AbstractThe dynamics and propagation of ion acoustic (IA) waves are considered in an unmagnetized collisionless plasma, whose constituents are the relativistically degenerate electrons and positrons as well as the inertial cold ions. At a first step, a linear dispersion relation for IA waves is derived and analysed numerically. For nonlinear analysis, the reductive perturbation technique is used to derive a Korteweg–deVries equation, which admits a localized wave solution in the presence of relativistic degenerate electrons and positrons. It is shown that only compressive IA solitary waves can propagate, whose amplitude, width and phase velocity are significantly modified due to the positron concentration. The latter also strongly influences all the relativistic plasma parameters. Our present analysis is aimed to understand collective interactions in dense astrophysical objects, e.g. white dwarfs, where the lighter species electrons and positrons are taken as relativistically degenerate.


2009 ◽  
Vol 76 (3-4) ◽  
pp. 277-286 ◽  
Author(s):  
FRANK VERHEEST ◽  
MANFRED A. HELLBERG

AbstractLarge amplitude ion-acoustic solitons are treated by a Sagdeev pseudopotential analysis, in a plasma with two adiabatic constituents, with the full inclusion of inertial and pressure effects for both. The sign of the supersonic species determines the polarity of the solitons, which are compressive in both constituents. Emphasis is placed on the determination of the soliton existence domains in compositional parameter space, allowing correct Sagdeev pseudopotential graphs to be easily generated, and offering insight into why limitations occur. Soliton velocities are bounded from below by the true acoustic velocity in the plasma model, and from above by the breakdown of the description when the supersonic ions reach their sonic point. Increases in the mass density ratio and the soliton velocity or decreases in the temperature ratio lead to increases in soliton amplitudes and decreases of the widths. Applications include hydrogen and electron–positron plasmas, and various kinds of dusty plasmas.


Sign in / Sign up

Export Citation Format

Share Document