scholarly journals Structure and magnetic properties of Co-W clusters produced by inert gas condensation

2012 ◽  
Vol 111 (7) ◽  
pp. 07B524 ◽  
Author(s):  
Farhad Golkar ◽  
M. J. Kramer ◽  
Y. Zhang ◽  
R. W. McCallum ◽  
R. Skomski ◽  
...  
2021 ◽  
pp. 161863
Author(s):  
Nicola Patelli ◽  
Francesco Cugini ◽  
Di Wang ◽  
Samuele Sanna ◽  
Massimo Solzi ◽  
...  

2010 ◽  
Vol 10 (5) ◽  
pp. 3667-3670 ◽  
Author(s):  
Il-Suk Kang ◽  
Hyun-Sang Seo ◽  
Deuk-Han Kim ◽  
Taek-Yeong Lee ◽  
Jun-Mo Yang ◽  
...  

1981 ◽  
Vol 106 (1-3) ◽  
pp. A170
Author(s):  
J. Mühlbach ◽  
E. Recknagel ◽  
K. Sattler

ACS Nano ◽  
2016 ◽  
Vol 10 (4) ◽  
pp. 4684-4694 ◽  
Author(s):  
Junlei Zhao ◽  
Ekaterina Baibuz ◽  
Jerome Vernieres ◽  
Panagiotis Grammatikopoulos ◽  
Ville Jansson ◽  
...  

2006 ◽  
Vol 20 (01) ◽  
pp. 37-47
Author(s):  
LUBNA RAFIQ SHAH ◽  
BAKHTYAR ALI ◽  
S. K. HASANAIN ◽  
A. MUMTAZ ◽  
C. BAKER ◽  
...  

We present magnetic measurements on iron ( Fe ) nanoparticles in the size range 10–30 nm produced by the Inert Gas Condensation process (IGC). Structural characterization studies show the presence of a core/shell structure, where the core is bcc Fe while the surface layer is Fe -oxide. Analysis of the magnetic measurements shows that the nanoparticles display very large uniaxial anisotropy, K eff ≈3 - 4 × 106 erg/cc. The observed room temperature coercivities lie in the range ≈600 – 973 Oe , much larger than those expected from the Stoner–Wohlfarth model using the bulk iron anisotropy. It can be inferred from the coercivity variation with the particle size that there is a general trend of the coercivity increasing with size, culminating finally in a decrease for high sizes (30 nm) possibly due to the onset of non-coherent magnetization reversal processes.


Sign in / Sign up

Export Citation Format

Share Document