scholarly journals Theory of binless multi-state free energy estimation with applications to protein-ligand binding

2012 ◽  
Vol 136 (14) ◽  
pp. 144102 ◽  
Author(s):  
Zhiqiang Tan ◽  
Emilio Gallicchio ◽  
Mauro Lapelosa ◽  
Ronald M. Levy
2020 ◽  
Author(s):  
E. Prabhu Raman ◽  
Thomas J. Paul ◽  
Ryan L. Hayes ◽  
Charles L. Brooks III

<p>Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small molecule lead optimization. Relative free energy perturbation (FEP) approaches are one of the most widely utilized for this goal, but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to setup, execute, and analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free energy landscape of any MSLD system is developed that enhances sampling and allows for efficient estimation of free energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than a hundred ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a lead compound, and thus are of utility in lead optimization.</p>


ChemBioChem ◽  
2020 ◽  
Author(s):  
fareed aboul-ela ◽  
Abdallah S Abdelsatter ◽  
Youssef Mansour

2020 ◽  
Vol 153 (24) ◽  
pp. 244119
Author(s):  
Steven Blaber ◽  
David A. Sivak

2021 ◽  
Vol 155 (2) ◽  
pp. 025101
Author(s):  
Kuan-Hsuan Su ◽  
Chin-Teng Wu ◽  
Shang-Wei Lin ◽  
Seiji Mori ◽  
Wei-Min Liu ◽  
...  
Keyword(s):  

2016 ◽  
Vol 36 ◽  
pp. 25-31 ◽  
Author(s):  
Alberto Perez ◽  
Joseph A Morrone ◽  
Carlos Simmerling ◽  
Ken A Dill

2018 ◽  
Vol 115 (46) ◽  
pp. 11688-11693 ◽  
Author(s):  
Thomas Suren ◽  
Daniel Rutz ◽  
Patrick Mößmer ◽  
Ulrich Merkel ◽  
Johannes Buchner ◽  
...  

The glucocorticoid receptor (GR) is a prominent nuclear receptor linked to a variety of diseases and an important drug target. Binding of hormone to its ligand binding domain (GR-LBD) is the key activation step to induce signaling. This process is tightly regulated by the molecular chaperones Hsp70 and Hsp90 in vivo. Despite its importance, little is known about GR-LBD folding, the ligand binding pathway, or the requirement for chaperone regulation. In this study, we have used single-molecule force spectroscopy by optical tweezers to unravel the dynamics of the complete pathway of folding and hormone binding of GR-LBD. We identified a “lid” structure whose opening and closing is tightly coupled to hormone binding. This lid is located at the N terminus without direct contacts to the hormone. Under mechanical load, apo-GR-LBD folds stably and readily without the need of chaperones with a folding free energy of 41 kBT (24 kcal/mol). The folding pathway is largely independent of the presence of hormone. Hormone binds only in the last step and lid closure adds an additional 12 kBT of free energy, drastically increasing the affinity. However, mechanical double-jump experiments reveal that, at zero force, GR-LBD folding is severely hampered by misfolding, slowing it to less than 1·s−1. From the force dependence of the folding rates, we conclude that the misfolding occurs late in the folding pathway. These features are important cornerstones for understanding GR activation and its tight regulation by chaperones.


2021 ◽  
Author(s):  
Yuriy Khalak ◽  
Gary Tresdern ◽  
Matteo Aldeghi ◽  
Hannah Magdalena Baumann ◽  
David L. Mobley ◽  
...  

The recent advances in relative protein-ligand binding free energy calculations have shown the value of alchemical methods in drug discovery. Accurately assessing absolute binding free energies, although highly desired, remains...


2017 ◽  
Vol 19 (2) ◽  
pp. 1677-1685 ◽  
Author(s):  
Martin Brieg ◽  
Julia Setzler ◽  
Steffen Albert ◽  
Wolfgang Wenzel

Hydration free energy estimation of small molecules from all-atom simulations was widely investigated in recent years, as it provides an essential test of molecular force fields and our understanding of solvation effects.


Sign in / Sign up

Export Citation Format

Share Document