Computer experiments on aqueous solutions. VI. Potential energy function for tert‐butyl alcohol dimer and molecular dynamics calculation of 3 mol % aqueous solution of tert‐butyl alcohol

1984 ◽  
Vol 81 (9) ◽  
pp. 4065-4073 ◽  
Author(s):  
Hideki Tanaka ◽  
Koichiro Nakanishi ◽  
Hidekazu Touhara
2004 ◽  
Vol 15 (06) ◽  
pp. 917-930 ◽  
Author(s):  
ZUHEIR EL-BAYYARI ◽  
HÜSEYIN OYMAK ◽  
HATICE KÖKTEN

Using an empirical potential energy function parametrized for each of the Ni , Cu , Pd , Pt , and Pb systems, minimum-energy structures of Ni n, Cu n, Pd n, Pt n, and Pb n (n=3–13) microclusters have been determined by performing molecular-dynamics simulations. The structural and energetic features of the obtained microclusters have been investigated.


2002 ◽  
Vol 13 (03) ◽  
pp. 367-373 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.


2005 ◽  
Vol 77 (6) ◽  
pp. 475-477 ◽  
Author(s):  
Guoqiang Wu ◽  
Zhaowei Sun ◽  
Xianren Kong ◽  
Dan Zhao

PurposeCombining the characteristic of satellite “minisize nucleus” non‐equilibrium molecular dynamics (NEMD) method is used. We select corresponding Tersoff potential energy function to build model and, respectively, simulate thermal conductivities of silicon nanometer thin film.Design/methodology/approachNEMD method is used, and the corresponding Tersoff potential energy function is used to build model.FindingsThe thermal conductivities of silicon nanometer thin film are markedly below the corresponding thermal conductivities of their crystals under identical temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.Research limitations/implicationsIt is difficult to do physics experiment.Practical implicationsThe findings have some theory guidance to analyze satellite thermal control.Originality/valueThe calculation results of thermal conductivities specify distinct size effect. The normal direction thick film thermal conductivity of silicon crystal declines with the increasing temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.


Sign in / Sign up

Export Citation Format

Share Document