Unified semiclassical dynamics for molecular resonance spectra

1989 ◽  
Vol 90 (11) ◽  
pp. 6086-6098 ◽  
Author(s):  
Lin Xiao ◽  
Michael E. Kellman
2021 ◽  
pp. 014556132110015
Author(s):  
Filippo Ricciardiello ◽  
Davide Pisani ◽  
Pasquale Viola ◽  
Raul Pellini ◽  
Giuseppe Russo ◽  
...  

Objective: The aim of this study was to assess the long-term effectiveness of quantic molecular resonance (QMR) in the treatment of inferior turbinate hypertrophy (ITH) in allergic and nonallergic rhinitis refractory to medical therapy. Methods: This study enrolled 281 patients, 160 males (56.9%) and 121 females (43.1%), mean age 37.8 ± 4.1 years, range 18 to 71. Fifty-four patients have been lost to follow up and have been therefore excluded from the final analysis. Based on skin prick test results, 69 patients were considered allergic (group A) and 158 nonallergic (group B). All subjects underwent before surgery (T0) and 3 (T1), 12 (T2), 24 (T3), and 36 months (T4) after QMR treatment to: 4-phase rhinomanometric examination, nasal endoscopy evaluation, and visual analogue scale to quantify the subjective feelings about nasal obstruction. Results: Subjective and objective parameters showed statistically significant improvement in both groups. Group B parameters not changed during follow-up, while group A showed significant worsening between T1 and subsequent assessments. T4 outcome indicates a better result in nonallergic patients. Conclusions: In accordance with the literature, our preliminary data validate QMR treatment as a successful therapeutic option for nasal obstruction due to ITH. Nonallergic patients had a very good T4 outcome. Allergic patients showed a worsening trend after 1 year probably due to other causes.


2004 ◽  
Vol 120 (16) ◽  
pp. 7426-7437 ◽  
Author(s):  
Marc Joyeux ◽  
Reinhard Schinke ◽  
Sergy Yu. Grebenshchikov

2016 ◽  
Vol 18 (3) ◽  
pp. 1771-1785 ◽  
Author(s):  
Kazuo Takatsuka ◽  
Kentaro Matsumoto

We present a basic theory to study real-time chemical dynamics embedded in a statistically treated large environment. It is shown that dynamically treated molecules should run on the free-energy functional surface, if and only if the spatial gradients of temperature functional are all zero.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Silvia Pappalardi ◽  
Anatoli Polkovnikov ◽  
Alessandro Silva

Understanding the footprints of chaos in quantum-many-body systems has been under debate for a long time. In this work, we study the echo dynamics of the Sherrington-Kirkpatrick (SK) model with transverse field under effective time reversal. We investigate numerically its quantum and semiclassical dynamics. We explore how chaotic many-body quantum physics can lead to exponential divergence of the echo of observables and we show that it is a result of three requirements: i) the collective nature of the observable, ii) a properly chosen initial state and iii) the existence of a well-defined chaotic semi-classical (large-N) limit. Under these conditions, the echo grows exponentially up to the Ehrenfest time, which scales logarithmically with the number of spins N. In this regime, the echo is well described by the semiclassical (truncated Wigner) approximation. We also discuss a short-range version of the SK model, where the Ehrenfest time does not depend on N and the quantum echo shows only polynomial growth. Our findings provide new insights on scrambling and echo dynamics and how to observe it experimentally.


Sign in / Sign up

Export Citation Format

Share Document