On the nonlinear behavior of dielectric relaxation in alternating fields. II. Analytic expressions of the nonlinear susceptibilities

1993 ◽  
Vol 98 (10) ◽  
pp. 8149-8153 ◽  
Author(s):  
Jean‐Louis Déjardin ◽  
Georges Debiais ◽  
Abdesselam Ouadjou
Author(s):  
Jianzhe Huang ◽  
Xingzhong Xiong

Purpose Due to the coupling between the direct-axis current, quadrature-axis current and rotor speed, the dynamic response could be strongly nonlinear. Besides, if the working condition is severe, the loading is no longer constant and multiple harmonics could be introduced. In this paper, the periodic motions for brushless motor will be solved, and accurate analytic solution will be obtained through the proposed method. The purpose of this study is to provide accurate analytic solution of periodic motions for brushless motor with fluctuated loading, which is a dynamic system with strong nonlinearity. Design/methodology/approach A newly developed semi-analytic algorithm called discrete implicit maps is used to give analytic solutions for both stable and unstable motions for such a motor. Findings The accurate analytic expressions for stable and unstable periodic motions have been obtained. For unstable motion, it can stay on the unstable orbit for many periods without any controller. Through bifurcation analysis, the parameter sensitivity has been obtained which can be a suggestion for design and operation. Originality/value This paper provides all possible analytical solutions for period-1 motion as well as the unstable motions in a range of system parameters. It offers a chance to control the unstable motion for such a motor.


Author(s):  
Sergio Elaskar ◽  
Ezequiel del Rio ◽  
Andrea Costa

In this paper, we extend a methodology developed recently to study type-III intermittency considering different values of the noise intensity and the lower boundary of reinjection (LBR). We obtain accurate analytic expressions for the reinjection probability density (RPD). The proposed RPD has a piecewise definition depending on the nonlinear behavior, the LBR value, and the noise intensity. The new RPD is a sum of exponential functions with exponent α + 2, where α is the exponent of the noiseless RPD. The theoretical results are verified with the numerical simulations.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 4-11
Author(s):  
MOHAMED CHBEL ◽  
LUC LAPERRIÈRE

Pulp and paper processes frequently present nonlinear behavior, which means that process dynam-ics change with the operating points. These nonlinearities can challenge process control. PID controllers are the most popular controllers because they are simple and robust. However, a fixed set of PID tuning parameters is gen-erally not sufficient to optimize control of the process. Problems related to nonlinearities such as sluggish or oscilla-tory response can arise in different operating regions. Gain scheduling is a potential solution. In processes with mul-tiple control objectives, the control strategy must further evaluate loop interactions to decide on the pairing of manipulated and controlled variables that minimize the effect of such interactions and hence, optimize controller’s performance and stability. Using the CADSIM Plus™ commercial simulation software, we developed a Jacobian sim-ulation module that enables automatic bumps on the manipulated variables to calculate process gains at different operating points. These gains can be used in controller tuning. The module also enables the control system designer to evaluate loop interactions in a multivariable control system by calculating the Relative Gain Array (RGA) matrix, of which the Jacobian is an essential part.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


2020 ◽  
Vol 2020 (10) ◽  
pp. 310-1-310-7
Author(s):  
Khalid Omer ◽  
Luca Caucci ◽  
Meredith Kupinski

This work reports on convolutional neural network (CNN) performance on an image texture classification task as a function of linear image processing and number of training images. Detection performance of single and multi-layer CNNs (sCNN/mCNN) are compared to optimal observers. Performance is quantified by the area under the receiver operating characteristic (ROC) curve, also known as the AUC. For perfect detection AUC = 1.0 and AUC = 0.5 for guessing. The Ideal Observer (IO) maximizes AUC but is prohibitive in practice because it depends on high-dimensional image likelihoods. The IO performance is invariant to any fullrank, invertible linear image processing. This work demonstrates the existence of full-rank, invertible linear transforms that can degrade both sCNN and mCNN even in the limit of large quantities of training data. A subsequent invertible linear transform changes the images’ correlation structure again and can improve this AUC. Stationary textures sampled from zero mean and unequal covariance Gaussian distributions allow closed-form analytic expressions for the IO and optimal linear compression. Linear compression is a mitigation technique for high-dimension low sample size (HDLSS) applications. By definition, compression strictly decreases or maintains IO detection performance. For small quantities of training data, linear image compression prior to the sCNN architecture can increase AUC from 0.56 to 0.93. Results indicate an optimal compression ratio for CNN based on task difficulty, compression method, and number of training images.


2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


Sign in / Sign up

Export Citation Format

Share Document