Effect of heat sink design on thermoelectric cooling performance

Author(s):  
Michael J. Nagy ◽  
Richard J. Buist
Author(s):  
Kyung Min Jang ◽  
Jun Young Kim ◽  
Cholongi Eum ◽  
KwangSun Kim

With the improved performance of IT devices like car microprocessors, the heat generated in the electric devices are being increased in amount. The increased heating value degrades the performance of devices and circuits, which will affect the durability and reliability of products eventually by causing their failure. Therefore, a study on the cooling performance improvement of heat sinks is essential to decrease the temperatures of the field effect transistors (FETs) in cars. In this study, numerical analysis and experimental tests were carried out to develop a new heat sink design for a different FET material, heat conductive resin. Without the heat sink, the new FET had a temperature distribution of 70–90 Celsius, which was measured in the laboratory environment similar to the real chamber within a car. Based on the numerical and experimental test and analysis of the FET new heat sink system, the improved shape and array of the fins are developed that meet the target temperature of the FET. For heat sinks, efficient cooling design and reduced manufacturing costs are derived from the comparison with those of old heat sink material, Aluminum.


Author(s):  
Xiaoyuan Ying ◽  
Fangming Ye ◽  
Ruitao Liu ◽  
Hua Bao

A design method for the thermoelectric cooling system is improved in this work based on a graphical approach. It is used to select an appropriate thermoelectric cooler (TEC) and determine the value of optimum input current. Theoretical analysis has been conducted to investigate the cooling performance of the system using the design method. Numerical simulation and experimental tests for the entire cooling system validate the calculation result, which indicates the high reliability of the theoretical design method. The temperature dependence of the heat sink resistance and the contact resistance are the major reasons for the small discrepancy. Research is then conducted based on the design method to investigate how a thermoelectric cooling system under natural convection performs, where the optimization of heat sinks at hot side of TEC is done by using the generalized correlations in the previous studies. Comparison is made between the thermoelectric cooling system and the bare-heat-sink system under natural convection. Results show that the thermal resistance of the heat sink attached to TEC is critical to the cooling performance of the whole system. Besides, TEC under natural convection can perform better than the passive cooling if the heat load is not very high (qc″≤20,000 W/m2). The design process and results can provide a useful guidance for other thermal engineers.


2011 ◽  
Vol 1 (9) ◽  
pp. 65-67
Author(s):  
Pritesh S Patel ◽  
◽  
Prof. Dattatraya G Subhedar ◽  
Prof. Kamlesh V Chauhan

2022 ◽  
Vol 48 ◽  
pp. 103882
Author(s):  
Adeel Arshad ◽  
Mark Jabbal ◽  
Hamza Faraji ◽  
Pouyan Talebizadehsardari ◽  
Muhammad Anser Bashir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document