Many‐body trial wave functions for atomic systems and ground states of small noble gas clusters

1994 ◽  
Vol 101 (10) ◽  
pp. 8831-8841 ◽  
Author(s):  
Andrei Mushinski ◽  
M.P. Nightingale
2015 ◽  
Vol 92 (21) ◽  
Author(s):  
Xiao Chen ◽  
Xiongjie Yu ◽  
Gil Young Cho ◽  
Bryan K. Clark ◽  
Eduardo Fradkin

1972 ◽  
Vol 27 (4) ◽  
pp. 545-552 ◽  
Author(s):  
R. Albat

Abstract An Approximation of Löwdin's Natural Orbitals for Molecules with a Green's Function Method The many-body-pertubation theorie of the single-particle Green's function is used to get an approximate first-order density matrix. Slightly modified SCF-orbitals form the basis for the expansion. The mass-operator in Dyson's equation is considered up to second order in the Perturbation. In the present form the method is only applicable to ground states with closed shells. The ground states of the molecules LiH and NH3 serve as examples to demonstrate the usefulness of the directly calculated natural orbitals for application in the C I-method. The natural orbitals give a much better convergence of the C I-expansion than the SCF-orbitals do.


Author(s):  
Sinya Aoki ◽  
Takumi Iritani ◽  
Koichi Yazaki

Abstract A formalism is given to hermitize the HAL QCD potential, which needs to be non-Hermitian except for the leading-order (LO) local term in the derivative expansion as the Nambu– Bethe– Salpeter (NBS) wave functions for different energies are not orthogonal to each other. It is shown that the non-Hermitian potential can be hermitized order by order to all orders in the derivative expansion. In particular, the next-to-leading order (NLO) potential can be exactly hermitized without approximation. The formalism is then applied to a simple case of $\Xi \Xi (^{1}S_{0}) $ scattering, for which the HAL QCD calculation is available to the NLO. The NLO term gives relatively small corrections to the scattering phase shift and the LO analysis seems justified in this case. We also observe that the local part of the hermitized NLO potential works better than that of the non-Hermitian NLO potential. The Hermitian version of the HAL QCD potential is desirable for comparing it with phenomenological interactions and also for using it as a two-body interaction in many-body systems.


2016 ◽  
Vol 756 ◽  
pp. 283-288 ◽  
Author(s):  
Alexander Tichai ◽  
Joachim Langhammer ◽  
Sven Binder ◽  
Robert Roth

Sign in / Sign up

Export Citation Format

Share Document