scholarly journals On a formalism to calculate single particle wave functions in crystals taking into account many-body aspects

1969 ◽  
Vol 218 (1) ◽  
pp. 109-110 ◽  
Author(s):  
H. Bross
2018 ◽  
Vol 20 (43) ◽  
pp. 27600-27610 ◽  
Author(s):  
Peter Schmitteckert

In this work we discuss the extraction of mean field single particle Hamiltonians from many body wave functions of fermionic systems.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 408
Author(s):  
Matteo Villani ◽  
Guillermo Albareda ◽  
Carlos Destefani ◽  
Xavier Cartoixà ◽  
Xavier Oriols

Without access to the full quantum state, modeling quantum transport in mesoscopic systems requires dealing with a limited number of degrees of freedom. In this work, we analyze the possibility of modeling the perturbation induced by non-simulated degrees of freedom on the simulated ones as a transition between single-particle pure states. First, we show that Bohmian conditional wave functions (BCWFs) allow for a rigorous discussion of the dynamics of electrons inside open quantum systems in terms of single-particle time-dependent pure states, either under Markovian or non-Markovian conditions. Second, we discuss the practical application of the method for modeling light–matter interaction phenomena in a resonant tunneling device, where a single photon interacts with a single electron. Third, we emphasize the importance of interpreting such a scattering mechanism as a transition between initial and final single-particle BCWF with well-defined central energies (rather than with well-defined central momenta).


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 149-167 ◽  
Author(s):  
Andrea Prunotto ◽  
Wanda Maria Alberico ◽  
Piotr Czerski

Abstract The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.


2015 ◽  
Vol 92 (21) ◽  
Author(s):  
Xiao Chen ◽  
Xiongjie Yu ◽  
Gil Young Cho ◽  
Bryan K. Clark ◽  
Eduardo Fradkin

2014 ◽  
Vol 28 (03) ◽  
pp. 1450046
Author(s):  
B. H. J. McKELLAR

In a particular exactly solvable model of an interacting system, the Boltzmann equation predicts a constant single particle density operator, whereas the exact solution gives a single particle density operator with a nontrivial time dependence. All of the time dependence of the single particle density operator is generated by the correlations.


Sign in / Sign up

Export Citation Format

Share Document