Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

2012 ◽  
Author(s):  
Nasruddin ◽  
Darwin R. B. Syaka ◽  
M. Idrus Alhamid
2014 ◽  
Vol 960-961 ◽  
pp. 643-647
Author(s):  
Yan Sheng Xu

A stepped capillary tube consisting of two serially connected capillary tubes with different diameters is invented to replace the conventional expansion device. The mass flow rate of refrigerant R410A in stepped capillary tubes with different size were tested. The model of stepped capillary tube is proposed, and its numerical algorithm for tube length and mass flow rate is developed. The experimental results show that the performance comparing between stepped capillary tube system and capillary tube assembly system, the cooling capacity is reduced by 0.3%, the energy efficiency ratio (EER) is equal to each other, the heating capacity is increased by 0.3%, the coefficient of performance (COP) is decreased by 0.3%. That is to say, the performance index of the two kinds of throttle mechanism is almost identical. It indicates that the stepped capillary tube can replace the capillary tube assembly in the R410A heat pump type air conditioner absolutely. The model is validated with experimental data, and the results show that the model can be used for sizing and rating stepped capillary tube.


2020 ◽  
Vol 118 ◽  
pp. 269-278 ◽  
Author(s):  
Thiago Torres Martins Rocha ◽  
Cleison Henrique de Paula ◽  
Vinícius Melo Cangussu ◽  
Antônio Augusto Torres Maia ◽  
Raphael Nunes de Oliveira

2017 ◽  
Vol 25 (04) ◽  
pp. 1730004 ◽  
Author(s):  
Mehdi Rasti ◽  
Ji Hwan Jeong

Capillary tubes are widely used as expansion devices in small-capacity refrigeration systems. Since the refrigerant flow through the capillary tubes is complex, many researchers presented empirical dimensionless correlations to predict the refrigerant mass flow rate. A comprehensive review of the dimensionless correlations for the prediction of refrigerants mass flow rate through straight and coiled capillary tubes depending on their geometry and adiabatic or diabatic capillary tubes depending on the flow configurations has been discussed. A comprehensive review shows that most of previous dimensionless correlations have problems such as discontinuity at the saturated lines or ability to predict the refrigerant mass flow rate only for the capillary tube subcooled inlet condition. The correlations suggested by Rasti et al. and Rasti and Jeong appeared to be general and continuous and these correlations can be used to predict the refrigerant mass flow rate through all the types of capillary tubes with wide range of capillary tube inlet conditions including subcooled liquid, two-phase mixture, and superheated vapor conditions.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Faming Sun ◽  
Yasuyuki Ikegami ◽  
Hirofumi Arima ◽  
Weisheng Zhou

On the base of the two classical thermodynamic cycles (Kalina cycle and Rankine cycle), solar-boosted Kalina system (Kalina solar system) and solar-boosted Rankine system (Rankine solar system) with traditional nonconcentrating flat plate solar collector (FPSC) and evacuated tube solar collector (ETSC) are investigated in the present paper. The proposed solar systems are considered to be the hybrid of power generation subcycle and solar collector subcycle. Their electricity generating performances are compared under their respective optimal operating conditions to clarify which one is more competitive in solar utilization. Results show that ETSC is the better choice for the both solar systems. Further, the performance comparison shows that the low-temperature solar energy utilized in Kalina cycle is predominant to generate electricity. Meanwhile, the study also find that mass flow rate of the power generation subcycle, mass flow rate of the solar collector subcycle, mass fraction of ammonia and the regenerator performance are important operational parameters for high performance of the Kalina solar system. Finally, with the aid of the weather conditions of Kumejima Island in Japan, the perceptual knowledge for Kalina solar system by using an application case is shown in the paper.


1996 ◽  
Vol 118 (1) ◽  
pp. 150-154 ◽  
Author(s):  
Tuncay Yilmaz ◽  
Saban U¨nal

Capillary tubes are used widely in small refrigeration systems. It is necessary to design the capillary tube, but there does not exist any analytical equation which allows the determination of capillary tube length or mass flow rate for all refrigerants. In this work, an analytical equation is derived which allows to design the capillary tubes. The comparison with existing methods and experimentally obtained values using the refrigerants R12, R22, R113, R114, R134a, and R600a has turned out to be satisfactory.


Author(s):  
A. Nouri-Borujerdi ◽  
P. Javidmand

This paper presented a numerical study that predicts critical mass flow rate, pressure, vapor quality, and void fraction along a very long tube with small diameter or capillary tub under critical condition by the drift flux model. Capillary tubes are simple expansion devices and are necessary to design and optimization of refrigeration systems. Using dimensional analysis by Buckingham’s π theory, some generalized correlations are proposed for prediction of flow parameters as functions of flow properties and tube sizes under various critical conditions. This study is performed under the inlet pressure in the range of 0.8 ≤ pin ≤ 1.5Mpa, subcooling temperature between 0 ≤ ΔTsub ≤ 10 °C. The tube diameter is in the range of 0.5 ≤ D ≤ 1.5mm and tube length between 1 ≤ L ≤ 2m for water, ammonia, refrigerants R-12, R-22 and R-134 as working fluids. Comparison between the results of the present work and some experimental data indicates a good agreement. Cluster of data close to the fitted curves also shows satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document