Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

2014 ◽  
Author(s):  
H. Manjunatha ◽  
G. N. Kumaraswamy ◽  
R. Damle
2020 ◽  
Vol 27 (12) ◽  
pp. 2050019 ◽  
Author(s):  
A. ABDEL-GALIL ◽  
A. ATTA ◽  
M. R. BALBOUL

In this paper, we report the influence of low-energy oxygen ion irradiation with fluence ranging from [Formula: see text][Formula: see text][Formula: see text] to [Formula: see text][Formula: see text][Formula: see text] on the structural, optical, and electrical properties of fresh and annealed (400∘C, 3[Formula: see text]h) zinc oxide (ZnO) thin films. These films were grown on soda-lime glass (SLG) substrates using the spin-coating method as a low-cost depositing technique. X-ray diffraction (XRD) study showed the formation of the hexagonal phase of ZnO thin films with preferred orientation along the (002) plane. The crystallite size for fresh and annealed ZnO thin films was in nanoscale and it increased with the annealing temperature. Also, the crystallite size increased with the ion beam irradiation fluence in the case of annealed ZnO films, while it slightly decreased for the fresh ZnO films. The transmittance and absorbance spectra for the ZnO films were investigated in a wide wavelength range. The optical bandgap was specified by using Tauc’s relation. The electrical properties of the ZnO films (fresh and annealed at 400∘C for 3[Formula: see text]h) were studied before and after the oxygen ion beam irradiation. Also, the dielectric properties were investigated with respect to frequency at different ion beam irradiation fluences. The comprehensive results showed the dielectric and optical properties are improved due to the induced conductive networks by oxygen ion irradiation.


Author(s):  
Satyanarayan Dhal ◽  
Pritam Das ◽  
Arpita Patro ◽  
Madhuchhanda Swain ◽  
Sheela Rani Hota ◽  
...  

2015 ◽  
Vol 6 (7) ◽  
pp. 1052-1055 ◽  
Author(s):  
Suting Yan ◽  
Jianda Xie ◽  
Qingshi Wu ◽  
Shiming Zhou ◽  
Anqi Qu ◽  
...  

A solid polymer electrolyte fabricated using ion containing microgels manifests high ionic conductivity for potential use in lithium batteries.


2019 ◽  
Vol 7 (34) ◽  
pp. 19970-19976 ◽  
Author(s):  
Cheng Ma ◽  
Yiming Feng ◽  
Fangzhou Xing ◽  
Lin Zhou ◽  
Ying Yang ◽  
...  

A borate decorated anion-immobilized solid polymer electrolyte effectively integrates high ionic conductivity, high Li+ transference number and reasonably mechanical integrity, enabling long-term cycling stability for dendrite-free lithium metal batteries.


Author(s):  
P.W. Nebiker ◽  
M. Döbeli ◽  
R. Mühle ◽  
M. Suter ◽  
D. Vetterli

Sign in / Sign up

Export Citation Format

Share Document