scholarly journals Robust random number generation using steady-state emission of gain-switched laser diodes

2014 ◽  
Vol 104 (26) ◽  
pp. 261112 ◽  
Author(s):  
Z. L. Yuan ◽  
M. Lucamarini ◽  
J. F. Dynes ◽  
B. Fröhlich ◽  
A. Plews ◽  
...  
2020 ◽  
Vol 10 (7) ◽  
pp. 2431 ◽  
Author(s):  
Min Huang ◽  
Ziyang Chen ◽  
Yichen Zhang ◽  
Hong Guo

Quantum random number generators are widely used in many applications, ranging from sampling and simulation, fundamental science to cryptography, such as a quantum key distribution system. Among all the previous works, quantum noise from phase fluctuation of laser diodes is one of the most commonly used random source in the quantum random number generation, and many practical schemes based on phase noise with compact systems have been proposed so far. Here, we proposed a new structure of phase noise scheme, utilizing the phase fluctuation from two laser diodes with a slight difference of center wavelength. By analyzing the frequency components and adopting an appropriate band-pass filter, we prove that our scheme extracts quantum noise and filtered other classical noises substantially. Results of a randomness test shows that the extracted random sequences are of good performance. Due to lack of delay-line and the low requirement on other devices in this system, our scheme is promising in future scenarios for miniaturized quantum random number generation systems.


2010 ◽  
Author(s):  
Hiroki Nishimura ◽  
Kohei Doi ◽  
Tetsurou Ushiki ◽  
Takashi Sato ◽  
Masashi Ohkawa ◽  
...  

2014 ◽  
Vol 1 ◽  
pp. 272-275 ◽  
Author(s):  
Vincent Canals ◽  
Antoni Morro ◽  
Josep L. Rosselló

2021 ◽  
Vol 485 ◽  
pp. 126736
Author(s):  
Muhammad Imran ◽  
Vito Sorianello ◽  
Francesco Fresi ◽  
Bushra Jalil ◽  
Marco Romagnoli ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


2015 ◽  
Vol 137 ◽  
pp. 828-836 ◽  
Author(s):  
Che-Chi Shu ◽  
Vu Tran ◽  
Jeremy Binagia ◽  
Doraiswami Ramkrishna

Sign in / Sign up

Export Citation Format

Share Document