Equation of state of bcc-Mo by static volume compression to 410 GPa

2014 ◽  
Vol 116 (22) ◽  
pp. 223504 ◽  
Author(s):  
Yuichi Akahama ◽  
Naohisa Hirao ◽  
Yasuo Ohishi ◽  
Anil K. Singh
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeewan C. Bhatt ◽  
Kuldeep Kholiya ◽  
Ravindra Kumar

Shanker Equation of State is used to study the volume compression of nanocrystalline materials under different pressure. On comparing with the experimental data it gives good results at low pressure, but for higher compression it deviates from the experimental points. Therefore, the Equation of State is modified empirically to study the pressure-volume relation for nanomaterials, namely, n-Rb3C60, n-CdSe (rocksalt phase), n-TiO2 (anatase and rutile phase), Fe-filled nanotube, and γ-Fe2O3, at high pressure. The results obtained from the empirical Equation of State are found to be in better agreement with the available experimental data.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Scott Bair ◽  
Mark Baker ◽  
David M. Pallister

A fixture was fabricated for the purpose of restraining the expansion of an existing metal bellows piezometer so that a refrigerant and oil mixture can be admitted under pressure. Measurements on a polyol ester (POE) with 9.2 wt.% of R134a show that the addition of refrigerant slightly increases compressibility. The previously reported reduction in compressibility (increase in bulk modulus) by Tuomas and Isaksson (2006, “Compressibility of Oil/Refrigerant Lubricants in Elasto-Hydrodynamic Contacts,” ASME J. Tribol., 128(1), pp. 218–220) of an ISO 68 POE when mixed with R134a cannot be supported by precise measurements of the volume compression. The increased compressibility found by Comuñas and co-workers (2002, “High-Pressure Volumetric Behavior of x 1, 1, 1, 2-Tetrafluoroethane + (1 − x) 2, 5, 8, 11, 14-Pentaoxapentadecane (TEGDME) Mixtures,” J. Chem. Eng. Data, 47(2), pp. 233–238) is the correct trend. The Tait equation of state (EoS) has been fitted to the data for both the neat POE and its 9.2% by weight mixture with refrigerant. The usual problem was encountered for the mixture with the Tait EoS at low pressure where the compressibility becomes greater than predicted due to proximity to the vapor dome. The measured relative volumes of the mixture can be used to collapse the viscosity to a master curve when plotted against the Ashurst–Hoover thermodynamic scaling parameter. The thermodynamic scaling interaction parameter is approximately the same as for the neat oil.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
W. Habchi ◽  
S. Bair

This paper investigates the effects of lubricant compressibility on the film-forming performance of thermal elastohydrodynamic lubricated (EHL) circular contacts. Numerical film thickness predictions using the classical Dowson and Higginson relationship are compared to those that would be obtained using a more realistic compressibility model, all other parameters kept unchanged. This allows an isolation of the realistic compressibility effects on the film-forming performance. For realistic predictions, the authors consider two model liquids from the 1953 report of the ASME Research Committee on Lubrication, the most and the least compressible. The compressibility of these liquids is modeled using the Tait equation of state (EoS) while all other transport properties are kept unchanged for the sake of isolating compressibility effects. In addition, the same typical generalized-Newtonian behavior is assumed for both model liquids. The results reconfirm the well-known observations that minimum film thickness is very little affected by lubricant compressibility while central film thickness decreases linearly with the increase in volume compression of the lubricant. It is also observed that the relative errors on central film thicknesses induced by the use of the Dowson and Higginson relationship for compressibility increase with load and temperature and are very little affected by mean entrainment speed. Compressibility is shown to be a significant source of error in film-derived measurements of pressure-viscosity coefficients especially at high temperature. The thermodynamic scaling that provides an accurate and consistent framework for the correlation of the thermophysical properties of liquids with temperature and pressure requires an accurate equation of state. In brief, this paper highlights the importance of using realistic transport properties modeling based on thermodynamic scaling for an accurate numerical prediction of the performance of EHL contacts.


1998 ◽  
Vol 94 (5) ◽  
pp. 809-814 ◽  
Author(s):  
C. BARRIO ◽  
J.R. SOLANA

2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-281-Pr5-286
Author(s):  
M. Ross ◽  
L. H. Yang ◽  
G. Galli

1980 ◽  
Vol 41 (C2) ◽  
pp. C2-83-C2-83
Author(s):  
Ph. Choquard
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document