Optimization of dissolved air flotation technique in harvesting microalgae from treated wastewater without flocculants addition

2015 ◽  
Vol 7 (1) ◽  
pp. 013130 ◽  
Author(s):  
Mohsen Niaghi ◽  
Mahmood A. Mahdavi ◽  
Reza Gheshlaghi
1974 ◽  
Vol 9 (1) ◽  
pp. 328-339 ◽  
Author(s):  
B. Volesky ◽  
S. Agathos

Abstract Air flotation as a physical separation process for removing oily products and suspended solid matter from refinery wastewaters achieves removal efficiencies from 65% to more than 90%. Demonstrated capacity of the process for COD and BOD removal ranges up to 90%. With addition of flotation and flocculation aid chemicals better performance is achieved. Current results are presented and critically reviewed. It appears that the pressure dissolved-air flotation system employing recycle-flow operation can produce effluent containing consistently less than 15 p.p.m. of oil and suspended solids. Its performance and capacity of handling overload situations makes it superior to the conventional flocculation-sedimentation technique. Oil removal limitations of the process and current research trends are stressed including an electro-flotation technique. Some aspects of process optimization are also discussed.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 315-326 ◽  
Author(s):  
Anastasios I. Zouboulis ◽  
Konstantine A. Matis

Cadmium constitutes a priority pollutant existing in waste streams from metal plating and various other industries. The removal of this toxic metal employing the dissolved air flotation technique was investigated in laboratory batch experiments; the mechanism of precipitate flotation as the respective hydroxide was followed. Main examined parameters include: recycle ratio, pH of the solution, concentrations of added surfactant (sodium dodecyl sulphate), frother (ethanol) and cadmium. Promising results have been obtained, at the pH range between 10 and 11 approximately, showing the significance of flotation as a separation process in water and wastewater treatment for dilute solutions (around 10 mg/l of metal). Under the optimum conditions removal of cadmium was near to 100%, while the remaining concentration in the solution after flotation was less than 0.10 mg/l. A comparison was also attempted between two flotation techniques applying different bubble generation methods, i.e. dissolved air and dispersed air flotation. These experiments run in parallel and under the same conditions.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 25-35 ◽  
Author(s):  
E. M. Rykaart ◽  
J. Haarhoff

A simple two-phase conceptual model is postulated to explain the initial growth of microbubbles after pressure release in dissolved air flotation. During the first phase bubbles merely expand from existing nucleation centres as air precipitates from solution, without bubble coalescence. This phase ends when all excess air is transferred to the gas phase. During the second phase, the total air volume remains the same, but bubbles continue to grow due to bubble coalescence. This model is used to explain the results from experiments where three different nozzle variations were tested, namely a nozzle with an impinging surface immediately outside the nozzle orifice, a nozzle with a bend in the nozzle channel, and a nozzle with a tapering outlet immediately outside the nozzle orifice. From these experiments, it is inferred that the first phase of bubble growth is completed at approximately 1.7 ms after the start of pressure release.


1998 ◽  
Vol 37 (2) ◽  
pp. 35-42 ◽  
Author(s):  
M. J. Bauer ◽  
R. Bayley ◽  
M. J. Chipps ◽  
A. Eades ◽  
R. J. Scriven ◽  
...  

Thames Water treats approximately 2800Ml/d of water originating mainly from the lowland rivers Thames and Lee for supply to over 7.3million customers, principally in the cities of London and Oxford. This paper reviews aspects of Thames Water's research, design and operating experiences of treating algal rich reservoir stored lowland water. Areas covered include experiences of optimising reservoir management, uprating and upgrading of rapid gravity filtration (RGF), standard co-current dissolved air flotation (DAF) and counter-current dissolved air flotation/filtration (COCO-DAFF®) to counter operational problems caused by seasonal blooms of filter blocking algae such as Melosira spp., Aphanizomenon spp. and Anabaena spp. A major programme of uprating and modernisation (inclusion of Advanced Water Treatment: GAC and ozone) of the major works is in progress which, together with the Thames Tunnel Ring Main, will meet London's water supply needs into the 21st Century.


2016 ◽  
Vol 2016 (9) ◽  
pp. 3543-3551
Author(s):  
H.W.H Menkveld ◽  
N. C Boelee ◽  
G.O.J Smith ◽  
S Christian

2021 ◽  
Vol 40 ◽  
pp. 101847
Author(s):  
Yonglei Wang ◽  
Wentao Sun ◽  
Luming Ding ◽  
Wei Liu ◽  
Liping Tian ◽  
...  

2001 ◽  
Vol 43 (8) ◽  
pp. 83-90 ◽  
Author(s):  
A. C. Pinto Filho ◽  
C. C. Brandão

A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant ; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond.


Sign in / Sign up

Export Citation Format

Share Document