bubble generation
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 73)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Babak Zahed ◽  
Amin Behzadmehr ◽  
Ghasem Miri-Aliabad ◽  
Tahereh Fanaei Sheikholeslami ◽  
Hassan Azarkish

Background: In recent decades, reducing the size of the drug delivery systems along with precise control of the amount of drug pumped, has attracted the attention of many researchers. Objectives: The slow subcutaneous infusion of the deferoxamine in thalassemia major patients during day is of vital importance either for the drug effectiveness. However, this is difficult to achieve due to the large size of the conventional infusion pumps and their high weight. Therefore, size and weight reduction of the infusion pumps are very important issues that must be well addressed. Methods: A biomedical micropump for drug solution infusion to human body based on the magnetohydrodynamic (MHD) concept is and designed, and its performance experimentally is investigated in this research. The key challenge in the fabrication of the micropump is its size, weight, bubble generation, and high operating voltage. Results: The present design is well responded to these problems. The final design operates with a 1.2 v without any bubble generation, while its size and weight are 20 × 40 × 50 mm3 and 90 grams, respectively. The size of the micropump is about 1/3 size of conventional micropump, while its weight is half of them. Conclusions: Therefore, the newly designed micropump has the ability to inject the drug solution to thalassemia major patients with a sufficient infusion rate during the day without disturbing them, so it can increase their quality of life and increase their life expectancy.


2021 ◽  
Vol 92 (11) ◽  
pp. 114902
Author(s):  
Bo-Wei Li ◽  
Jia-Wen He ◽  
Wen Bai ◽  
Hao-Dong Wang ◽  
Feng Ji ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5376
Author(s):  
Jonathan David López-Lugo ◽  
Reinher Pimentel-Domínguez ◽  
Jorge Alejandro Benítez-Martínez ◽  
Juan Hernández-Cordero ◽  
Juan Rodrigo Vélez-Cordero ◽  
...  

We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites’ photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
K. Li ◽  
K. A. A. Wolf ◽  
W. R. Rossen

Summary In this study, to investigate how gravity affects foam in open vertical fractures, we report foam experiments in three 1-m-long, 15-cm-wide glass-model fractures. Each fracture has a smooth wall and a roughened wall. Between the two walls is a slit-like channel representing a single geological fracture. Three model fractures (Models A, B, and C) share the same roughness and have different hydraulic apertures of 78, 98, and 128 µm, respectively. We conduct foam experiments by horizontal injection in the three model fractures placed horizontally and sideways (i.e., with the model fractures turned on their long side), and in Model A placed vertically with injection upward or downward. Direct imaging of the foam inside the model fracture is facilitated using a high-speed camera. We find that foam reaches local equilibrium (LE; where the rate of bubble generation equals that of bubble destruction) in horizontal-flow experiments in all three model fractures and in vertical-flow experiments in Model A. In fractures with a larger hydraulic aperture, foam is coarser because of less in-situ foam generation. In the vertical-flow experiments in Model A, we find that the properties of the foam are different in upward and downward flow. Compared with downward flooding, upward flooding creates a finer-texture foam, as sections near the inlet of this experiment are in a wetter state, which benefits in-situ foam generation. Moreover, less gas is trapped during upward flooding, as gravitational potential helps overcome the capillarity and moves bubbles upward. In the sideways-flow experiments, gravity segregation takes place. As a result, drier foam propagates along the top of the fractures and wetter foam along the bottom. The segregation is more significant in fractures with a larger hydraulic aperture. At foam quality 0.8, gas saturation is 27.7% greater at the top than the bottom for Model C, and 19.3% and 10.8% for Models B and A, respectively. Despite the gravity segregation in all three model fractures, water and gas are not completely segregated. All three model fractures thus represent a capillary transition zone, with greater segregation with increasing aperture. Our results suggest that the propagation of foam in vertical natural fractures meters tall and tens of meters long, with an aperture of hundreds of microns or greater, is problematic. Gravity segregation in foam would weaken its capacity in the field to maintain uniform flow and divert gas in a tall fracture over large distances.


2021 ◽  
Author(s):  
Guodong Ding ◽  
Jiaqing Chen ◽  
Zhenlin Li

Abstract Discrete bubbles can be effectively cracked and dispersed in a Venturi channel with its unique structural characteristics, and the general Venturi channel has been widely used in the practical engineering. Bubble breakup mechanisms based on Venturi channels have been extensively studied, but most of them are based on single bubble or bubble flow pattern. In this paper, the transport process of slug flow in a Venturi channel was explored through visualization experiments, and the characteristics of recirculation flow were indicated by numerical simulation method. The liquid velocity sensitively affects the bubble generation process. With the increase of the liquid velocity, the initial bubble is no longer detached from the gas injector hole, and the gas-liquid flow pattern changes from bubbly flow to slug flow. The slug bubble extends to the diverging section and experiences the process of interface instability, sub-bubble detachment and bubble collapse. The average Sauter bubble diameter decreases with the increase of liquid velocity, and the fitting function is Log Normal. There is a recirculation flow in the side wall region of the diverging section, and the area of the recirculation flow increases with the increase of the liquid velocity at the inlet. The numerical simulation results indicated that there is a large velocity gradient in the boundary region of the recirculation flow under slug flow pattern, which contribute to the bubble collapse.


2021 ◽  
pp. 117010
Author(s):  
Yan Pang ◽  
Yao Lu ◽  
Xiang Wang ◽  
Qiang Zhou ◽  
Yanlin Ren ◽  
...  

2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Darjan Podbevšek ◽  
Žiga Lokar ◽  
Jure Podobnikar ◽  
Rok Petkovšek ◽  
Matevž Dular

AbstractSingle bubble dynamics are of fundamental importance for understanding the underlying mechanisms in liquid–vapor transition phenomenon known as cavitation. In the past years, numerous studies were published and results were extrapolated from one technique to another and further on to “real-world” cavitation. In the present paper, we highlight the issues of using various experimental approaches to study the cavitation bubble phenomenon and its effects. We scrutinize the transients bubble generation mechanisms behind tension-based and energy deposition-based techniques and overview the physics behind the bubble production. Four vapor bubble generation methods, which are most commonly used in single bubble research, are directly compared in this study: the pulsed laser technique, a high- and low-voltage spark discharge and the tube arrest method. Important modifications to the experimental techniques are implemented, demonstrating improvement of the bubble production range, control and repeatability. Results are compared to other similar techniques from the literature, and an extensive report on the topic is given in the scope of this work. Simple-to-implement techniques are presented and categorized herein, in order to help with future experimental design. Repeatability and sphericity of the produced bubbles are examined, as well as a comprehensive overview on the subject, listing the bubble production range and highlighting the attributes and limitation for the transient cavitation bubble techniques. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miaomiao Jin ◽  
Yipeng Gao ◽  
Yongfeng Zhang ◽  
Chao Jiang ◽  
Jian Gan

AbstractMaterials performance can be significantly degraded due to bubble generation. In this work, the bubble growth process is elaborated in Cu by atomistic modeling to bridge the gap of experimental observations. Upon continuous He implantation, bubble growth is accommodated first by nucleation of dislocation network from bubble surface, then formation of dissociated prismatic dislocation loop (DPDL), and final DPDL emission in $$\langle 110\rangle$$ ⟨ 110 ⟩ directions. As the DPDL is found capable of collecting He atoms, this process is likely to assist the formation of self-organized bubble superlattice, which has been reported from experiments. Moreover, the pressurized bubble in solid state manifests the shape of an imperfect octahedron, built by Cu $$\{111\}$$ { 111 } surfaces, consistent with experiments. These atomistic details integrating experimental work fill the gap of mechanistic understanding of athermal bubble growth in Cu. Importantly, by associating with nanoindentation testings, DPDL punching by bubble growth arguably applies to various FCC (face-centered cubic) metals such as Au, Ag, Ni, and Al.


Author(s):  
Felix Reichmann ◽  
Jakob Herath ◽  
Lena Mensing ◽  
Norbert Kockmann

AbstractThe local gas-liquid mass transfer was characterized during bubble generation in T-contactors and in an adjacent micronozzle. A colorimetric technique with the oxygen sensitive dye resazurin was investigated to visualize gas-liquid mass transfer during slug flow, bubble deformation, as well as laminar and turbulent bubble breakup in the wake of a micronozzle. Two optimized nozzle geometries from previous studies were evaluated concerning volumetric mass transfer coefficients for low pressure loss, narrow residence time distribution, or high dispersion rates. Highest values in kla up to 60 s−1 were found for turbulent bubble breakup and an optimized micronozzle design in respect to pressure drop and dispersion rate. The achieved mass transfer coefficients were correlated with the energy dissipation rate within the micronozzles and with the inverse Kolmogorov time scale in vortex dissipation in good agreement for laminar and turbulent breakup regimes. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document