scholarly journals Propagation of pore pressure diffusion waves in saturated porous media

2015 ◽  
Vol 117 (13) ◽  
pp. 134902 ◽  
Author(s):  
Duoxing Yang ◽  
Qi Li ◽  
Lianzhong Zhang
1997 ◽  
Vol 81 (11) ◽  
pp. 7148-7152 ◽  
Author(s):  
H. Kytömaa ◽  
M. Kataja ◽  
J. Timonen

2003 ◽  
Author(s):  
Dmitry Silin ◽  
Valeri Korneev ◽  
Gennady Goloshubin

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Duoxing Yang ◽  
Lianzhong Zhang

Propagation of pore pressure and stress in water-saturated elastic porous media is theoretically investigated when considering the Darcy-Brinkman law. The wave mode, phase velocity, phase lag, damping factor, and characteristic frequency are found from the updated mathematic model. The Brinkman term describes the fluid viscous shear effects and importantly contributes to the dispersion relation and wave damping. The coincidence of the properties of Biot waves of the first and second kinds occurs at a characteristic frequency, which is remarkably influenced by the Brinkman term. A key finding is that, compared to the Darcy-Brinkman law, Darcy’s law overestimates the phase velocity, damping, and phase lag of the first wave, while underestimates the phase velocity, damping, and phase difference of the second wave. The introduction of the Darcy-Brinkman law yields an improved description of the damping of the compressional wave modes in saturated porous media.


Author(s):  
O. Barrera

AbstractThis paper presents an unified mathematical and computational framework for mechanics-coupled “anomalous” transport phenomena in porous media. The anomalous diffusion is mainly due to variable fluid flow rates caused by spatially and temporally varying permeability. This type of behaviour is described by a fractional pore pressure diffusion equation. The diffusion transient phenomena is significantly affected by the order of the fractional operators. In order to solve 3D consolidation problems of large scale structures, the fractional pore pressure diffusion equation is implemented in a finite element framework adopting the discretised formulation of fractional derivatives given by Grunwald–Letnikov (GL). Here the fractional pore pressure diffusion equation is implemented in the commercial software Abaqus through an open-source UMATHT subroutine. The similarity between pore pressure, heat and hydrogen transport is also discussed in order to show that it is possible to use the coupled thermal-stress analysis to solve fractional consolidation problems.


2016 ◽  
Vol 119 (15) ◽  
pp. 154901 ◽  
Author(s):  
Duoxing Yang ◽  
Qi Li ◽  
Lianzhong Zhang

Sign in / Sign up

Export Citation Format

Share Document