scholarly journals Propagation of Pore Pressure and Stress in Saturated Porous Media Based on a Darcy-Brinkman Formulation

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Duoxing Yang ◽  
Lianzhong Zhang

Propagation of pore pressure and stress in water-saturated elastic porous media is theoretically investigated when considering the Darcy-Brinkman law. The wave mode, phase velocity, phase lag, damping factor, and characteristic frequency are found from the updated mathematic model. The Brinkman term describes the fluid viscous shear effects and importantly contributes to the dispersion relation and wave damping. The coincidence of the properties of Biot waves of the first and second kinds occurs at a characteristic frequency, which is remarkably influenced by the Brinkman term. A key finding is that, compared to the Darcy-Brinkman law, Darcy’s law overestimates the phase velocity, damping, and phase lag of the first wave, while underestimates the phase velocity, damping, and phase difference of the second wave. The introduction of the Darcy-Brinkman law yields an improved description of the damping of the compressional wave modes in saturated porous media.

2015 ◽  
Vol 117 (13) ◽  
pp. 134902 ◽  
Author(s):  
Duoxing Yang ◽  
Qi Li ◽  
Lianzhong Zhang

1997 ◽  
Vol 81 (11) ◽  
pp. 7148-7152 ◽  
Author(s):  
H. Kytömaa ◽  
M. Kataja ◽  
J. Timonen

2005 ◽  
Vol 73 (4) ◽  
pp. 705-708 ◽  
Author(s):  
M. Tajuddin ◽  
S. Ahmed Shah

Employing Biot’s theory of wave propagation in liquid saturated porous media, the frequency equation of circumferential waves for a permeable and an impermeable surface of an infinite hollow poroelastic cylinder is derived in the presence of dissipation and then discussed. Phase velocity and attenuation are determined for different dissipations and then discussed. By ignoring liquid effects, the results of purely elastic solid are obtained as a special case.


Sign in / Sign up

Export Citation Format

Share Document