GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

2015 ◽  
Vol 22 (8) ◽  
pp. 083101 ◽  
Author(s):  
O. Mete ◽  
M. Labiche ◽  
G. Xia ◽  
K. Hanahoe
Author(s):  
Erik Adli

A linear electron-positron collider operating at TeV-scale energies will provide high precision measurements and allow, for example, precision studies of the Higgs boson as well as searches for physics beyond the standard model. A future linear collider should produce collisions at high energy, with high luminosity and with a good wall plug to beam power transfer efficiency. The luminosity per power consumed is a key metric that can be used to compare linear collider concepts. The plasma wakefield accelerator has demonstrated high-gradient, high-efficiency acceleration of an electron beam and is therefore a promising technology for a future linear collider. We will go through the opportunities of using plasma wakefield acceleration technology for a collider, as well as a few of the collider-specific challenges that must be addressed in order for a high-energy, high luminosity-per-power plasma wakefield collider to become a reality. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2007 ◽  
Vol 22 (23) ◽  
pp. 4265-4269
Author(s):  
MITSURU UESAKA ◽  
ANDREA ROSSI

We categorized 16 contributions into the three sub-fields. Those are 1. Compton scattering X-ray sources, 2. FEL and RF photoinjectors and 3. Plasma wakefield acceleration/innovative acceleration schemes. We performed a half day working group for each sub-field. The titles and summaries of the contributions appear in the article.


2013 ◽  
Author(s):  
B. Hidding ◽  
J. B. Rosenzweig ◽  
Y. Xi ◽  
B. O'Shea ◽  
G. Andonian ◽  
...  

2017 ◽  
Vol 24 (10) ◽  
pp. 103114 ◽  
Author(s):  
Yangmei Li ◽  
Guoxing Xia ◽  
Konstantin V. Lotov ◽  
Alexander P. Sosedkin ◽  
Kieran Hanahoe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document