power transfer efficiency
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 109)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongyong Shan ◽  
Haiyue Wang ◽  
Ke Cao ◽  
Junhua Zhang

AbstractThe wireless power transfer (WPT) system has been widely used in various fields such as household appliances, electric vehicle charging and sensor applications. A frequency reconfigurable magnetic resonant coupling wireless power transfer (MRCWPT) system with dynamically enhanced efficiency by using the frequency reconfigurable metamaterial is proposed in this paper. The reconfigurability is achieved by adjusting the capacitance value of the adjustable capacitor connected in the coil of the system. Finite element simulation results have shown that the frequency reconfigurable electromagnetic metamaterial can manipulate the direction of the electromagnetic field of the system due to its abnormal effective permeability. The ultra-thin frequency reconfigurable metamaterial is designed at different working frequencies of 14.1 MHz, 15 MHz, 16.2 MHz, 17.5 MHz, 19.3 MHz, 21.7 MHz and 25 MHz to enhance the magnetic field and power transfer efficiency (PTE) of the system. Frequency reconfigurable mechanism of the system with the frequency reconfigurable metamaterial is derived by the equivalent circuit theory. Finally, further measurement which verifies the simulation by reasonable agreement is carried out. PTE of the system by adding the metamaterial are 59%, 73%, 67%, 66%, 65%, 60% and 58% at different working frequencies. PTE of the system with and without the metamaterial is 72% and 49% at the distance of 120 mm and the frequency of 15 MHz, respectively.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Jiarui Bao ◽  
Shuyan Hu ◽  
Zibin Xie ◽  
Guangxi Hu ◽  
Ye Lu ◽  
...  

This work focuses on the optimization of coupling coefficient (k) of the inductive link for the wireless power transfer (WPT) system to be used in implantable medical devices (IMDs) of centimeter size. The analytic expression of k is presented. Simulations are conducted by using the high-frequency structure simulator (HFSS). Analytic results are verified with simulations. The receiving (Rx) coil is implanted in the body and set as a circular coil with a radius of 5 millimeters for reducing the risk of tissue inflammation. The inductive link under misalignment scenarios is optimized to improve k. When the distance between the transmitting (Tx) and Rx coils is fixed at 20 mm, it is found that, to maximize k, the Tx coil in a planar spiral configuration with an average radius of 20 mm is preferred, and the Rx coil in a solenoid configuration with a wire pitch of 0.7 mm is recommended. Based on these optimization results, an inductive link WPT system is proposed; the coupling coefficient k, the power transfer efficiency (PTE), and the maximum power delivered to the load (MPDL) of the system are obtained with both simulation and experiment. Different media of air, muscle, and bone separating the Tx and Rx coils are tested. For the muscle (bone) medium, PTE is 44.14% (43.07%) and MPDL is 145.38 mW (128.13 mW), respectively.


Author(s):  
Muhammad Muhaimin Mohd Taib ◽  
◽  
Asmarashid Ponniran ◽  

This study aims to increase the coupling coefficient of the coils and power transfer efficiency (PTE) of the wireless power transfer (WPT) system. WPT system has a severe issue with the PTE as the transfer distance between the transmitter and receiver increases. Therefore, the transmitter and receiver of the single-circular coil (CC-coil) need to be optimized in geometry to maintain high coupling at an optimum distance. Ferrite and aluminum shielding are also crucial on CC-coil optimization. Implementing the series-series (S-S) magnetic resonance compensation technique can increase the PTE of the WPT system. Therefore, the CC-coil is optimized using Ansys Electronics Desktop and co-simulated with the magnetic resonance circuit using Ansys Twin Builder. The results show that the CC-coils' coupling coefficient increased by 21.38% with the shielding implementation. The maximum optimum transfer distance of 37 mm for horizontal misalignment and 30 mm for vertical misalignment. Implementing the S-S magnetic resonance compensation technique can improve the PTE and output power of the WPT system. The power transmitted also varied with the transfer distance, which caused the system's variation of input impedance. Hence, it is essential to consider the coil design and compensation circuit to achieve high PTE and output power at a higher transfer distance.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8540
Author(s):  
Jinwook Kim ◽  
Do-Hyeon Kim ◽  
Jieun Kim ◽  
Young-Jin Park

An efficient wireless power transfer (WPT) system is proposed using two self-resonant coils with a high-quality factor (Q-factor) over medium distance via an adaptive impedance matching network using ferrite core transformers. An equivalent circuit of the proposed WPT system is presented, and the system is analyzed based on circuit theory. The design and characterization methods for the transformer are also provided. Using the equivalent circuit, the appropriate relation between turn ratio and optimal impedance matching conditions for maximum power transfer efficiency is derived. The optimal impedance matching conditions for maximum power transfer efficiency according to distance are satisfied simply by changing the turn ratio of the transformers. The proposed WPT system maintains effective power transfer efficiency with little Q-factor degradation because of the ferrite core transformer. The proposed system is verified through experiments at 257 kHz. Two WPT systems with coupling efficiencies higher than 50% at 1 m are made. One uses transformers at both Tx and Rx; the other uses a transformer at Tx only while a low-loss coupling coil is applied at Rx. Using the system with transformers at both Tx and Rx, a wireless power transfer of 100 watts (100-watt light bulb) is achieved.


Author(s):  
Nattapong Hatchavanich ◽  
Sumate Naetiladdanon ◽  
Anawach Sangswang ◽  
Mongkol Konghirun

The power transfer efficiency and output power of a wireless power transfer (WPT) system are mainly affected by magnetic coupling between the primary and secondary coils. This paper presents a constant-current series-series compensated WPT system. Based on the bifurcation criteria, kcri and Lcri, the splitting zero phase angle (ZPA) frequencies is adopted as the operating frequency. The proposed system remains fully compensated even under coupling variations, and without ferrite. The current and voltage gains at the operating frequency can be estimated through the primary current and voltage. A phase-locked loop circuit is used to track the corresponding ZPA frequency due to the coil positioning variations. Experimental results have shown that the 1-kW of output power with the satisfied efficiency of 96%.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2884
Author(s):  
Jingchen Wang ◽  
Mark Paul Leach ◽  
Eng Gee Lim ◽  
Zhao Wang ◽  
Rui Pei ◽  
...  

The use of printed spiral coils (PSCs) as inductors in the construction of Wireless Power Transmission (WPT) circuits can save space and be integrated with other circuit boards. The challenges and issues of PSCs present for WPT mainly relate to maintaining an inductive characteristic at frequencies in Ultra High Frequency (UHF) band and to maximising the power transfer efficiency (PTE) between primary and secondary circuits. A new technique is proposed to increase the Q-factor relative to that offered by the PSC, which is shown to enhance WPT performance. This paper provides four-turn planar split-ring loops with high Q-factor for wireless power transmission at UHF bands. This design enhances the power transfer efficiency more than 12 times and allows for a greater transfer distance from 5 mm to 20 mm, compared with a conventional planar rectangular spiral coil.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2928
Author(s):  
Joungha Lee ◽  
Seung Beop Lee

Most of the coil designs for wireless power transfer (WPT) systems have been developed based on the “single transmitter to a single receiver (S-S)” WPT systems by the empirical design approaches, partial domain searches, and shape optimization methods. Recently, the layout optimizations of the receiver coil for S-S WPT systems have been developed using gradient-based optimization, fixed-grid (FG) representation, and smooth boundary (SB) representation. In this paper, the new design optimization of the transmitter module for the “single transmitter to multiple receivers (S-M)” WPT system with the resonance optimization for the S-M WPT system is proposed to extremize the total power transfer efficiency while satisfying the load voltage (i.e., rated power) required by each receiver and the total mass used for the transmitter coil. The proposed method was applied to an application model (e.g., S-M WPT systems with two receiver modules). Using the sensitivity of design variables with respect to the objective function (i.e., total power transfer efficiency) and constraint functions (i.e., load voltage of each receiver module and transmitter coil mass) at each iteration of the optimization process, the proposed method determines the optimal transmitter module that can maximize the total power transfer efficiency while several constraints are satisfied. Finally, the optimized transmitter module for the S-M WPT system was demonstrated through comparison with experiments under the same conditions as the simulation environment.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2788
Author(s):  
Ziyang Lu ◽  
Yubin Zhao ◽  
Dunge Liu

In coupled magnetic resonance (CMR) wireless energy transfer systems, the energy transfer power is low and the power transfer efficiency changes with the coil position. One reason for this reduction in power and efficiency is the impedance mismatching (IM) between the Tx and Rx coils; achieving impedance matching for multiple-input multiple-output (MIMO) CMR IM wireless power transmission (WPT) is quite complex due to the uncertainty in the number of coils and the interaction between coils. In this paper, we provide an analytical model of MIMO CMR which fully formulates the complex relationship between multiple Tx and Rx channels. Then, we design an impedance matching network (IMN) for MIMO CMR and derive an optimal IM solution. Base on this solution, we also develop an adaptive impedance matching scheme to control IMN, based on an automatic analysis of MIMO CMR system; the resulting control scheme achieves optimal values for transmission power and efficiency through IMN and coil selection. The simulation results indicate that the scheme is able to automatically adjust the impedance matching network according to the changes of the relative positions between Tx and Rx coils to achieve high energy transfer power and efficiency.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012170
Author(s):  
E Zanganeh ◽  
M Song ◽  
M Korobkov ◽  
A Evlyukhin ◽  
A Miroshnichenko ◽  
...  

Abstract The main challenge in near-field wireless power transfer systems is the increase of power transfer efficiency. It can be achieved by reducing ohmic or radiation losses of the resonators included in the system. In this paper, we propose and investigate numerically a non-radiating near-field wireless power transfer system based on transmitter and receiver implemented as dielectric disk resonators. The transmitter and receiver geometrical parameters are numerically optimized to operate at the frequency of non-radiating state of high refractive index dielectric resonators instead of magnetic dipole mode. Under the non-radiating state, we determine the frequency with almost zero radiation to the far-field. We numerically study the wireless power transfer efficiency as a function of operation distance between the transmitter and receiver and demonstrate that the higher efficiency compared to magnetic dipole mode can be achieved at non-radiating state for a fixed distance due to suppression of the radiation loss.


2021 ◽  
Author(s):  
Abinaya.B ◽  
Abirami.A.P ◽  
Divya.J ◽  
Rajalakshmi.R

The vast majority of the modernized implantable devices and Bio-sensors are set inside a patient’s body. To overcome this constraint, in this paper we have designed a rechargeable battery with wireless power transfer technique. The transdermal power transfer for the Pacemaker which is placed inside the heart should be possible by the concept of mutual inductance. The receiver loop ought to be situated inside the body and the transmitter curl ought to be situated outside of the body. The voltage controller will give or manage the necessary yield (output) voltage. The experiments were conducted on wireless charging through pork tissues reveal that from a 3.919-mw power source, 3.072-mw power can be received at 300kHz, reaching a high wireless power transfer efficiency of 78.4%, showing that the charging is very fast. We have also connected a Bluetooth Module to the Atmega328 microcontroller. This Bluetooth technology is used in the Android mobile application to notice the charging levels of the pacemaker. This Inductive power transfer technique takes out the danger of contamination which is brought about by the medical procedure.


Sign in / Sign up

Export Citation Format

Share Document