Online monitoring of oil film using electrical capacitance tomography and level set method

2015 ◽  
Vol 86 (8) ◽  
pp. 085106 ◽  
Author(s):  
Q. Xue ◽  
B. Y. Sun ◽  
Z. Q. Cui ◽  
M. Ma ◽  
H. X. Wang
2014 ◽  
Vol 14 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Ziqiang Cui ◽  
Chengyi Yang ◽  
Benyuan Sun ◽  
Huaxiang Wang

Abstract In air/oil lubrication systems, the flow parameters, e.g., flow pattern, liquid film thickness, and air/oil flow rate, are of great importance to the transportation efficiency. In most cases, the on-going two-phase flow is annular flow with the oil moving along the tube wall and the air travelling at high speed in the center. This usually results in the formation of a thin oil film, the thickness of which is a key parameter determining the efficiency of the lubrication system. As the oil film thickness of the on-going air/oil flow varies dynamically, there is actually no applicable method for a non-intrusive test. In this paper, the use of electrical capacitance tomography (ECT) to investigate the air/oil flow has been studied. Capacitance measurements are made from an externally mounted electrode array in a non-invasive and non-intrusive manner. Both average and distributed oil film thicknesses can be calculated from the reconstructed ECT images. Simulation and experimental results show that the ECT technique can provide satisfactory results of online oil film thickness estimation


Author(s):  
E. Al Hosani ◽  
M. Soleimani

Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue ‘Supersensing through industrial process tomography’.


2015 ◽  
Vol 77 (28) ◽  
Author(s):  
MT Masturah ◽  
MHF Rahiman ◽  
Zulkarnay Zakaria ◽  
AR Rahim ◽  
NM Ayob

This paper discussed the design–functionality and application of Flexible Electrical Capacitance Tomography sensor (FlexiECT). The sensors consist of 12 electrodes allocated surrounding the outer layer of the pipeline. The sensor is designed in such that the flexibility features suit the applications in the pipeline of multiple size. This paper also discussed the preliminary result of FlexiECT applications in fluid imaging by identifying the percentage of two mixing fluids.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christoph Kandlbinder-Paret ◽  
Alice Fischerauer ◽  
Gerhard Fischerauer

Abstract In electrical capacitance tomography (ECT), the resolution of the reconstructed permittivity distribution improves with the number of electrodes used whereas the number of capacitance measurements and the measurement time increases with the number of electrodes. To cope with this tradeoff, we present a phantom-dependent adaptation scheme in which coarse measurements are performed with terminal electrodes interconnected to form a synthetic electrode ring with fewer but larger electrodes. The concept was tested by observing the sloshing of water inside a pipe. We compare the reconstructed results based on eight synthetic electrodes, on 16 elementary electrodes, and on the adaptation scheme involving both the eight synthetic electrodes and some of the elementary capacitances. The reconstruction used the projected Landweber algorithm for capacitances determined by a finite-element simulation and for measured capacitances. The results contain artefacts attributed to the influence of the high permittivity of water compared to the low permittivity of the pipe wall. The adaptation scheme leads to nearly the same information as a full measurement of all 120 elementary capacitances but only requires the measurement of 30 % fewer capacitances. By detecting the fill level using a tomometric method, it can be determined within an uncertainty of 5 % FS.


Sign in / Sign up

Export Citation Format

Share Document