scholarly journals Fractional boundary layer flow and radiation heat transfer of MHD viscoelastic fluid over an unsteady stretching surface

AIP Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 107133 ◽  
Author(s):  
Bingyu Shen ◽  
Liancun Zheng ◽  
Shengting Chen
1970 ◽  
Vol 46 (4) ◽  
pp. 451-456 ◽  
Author(s):  
K Bhattacharyya ◽  
MS Uddin ◽  
GC Layek ◽  
W Ali Pk

In this paper, we obtained solutions of boundary layer flow and heat transfer for two classes of viscoelastic fluid over a stretching sheet with internal heat generation or absorption. In the analysis, we consider second-grade fluid and Walter's liquid B. The governing equations are transformed into self-similar ordinary differential equations by similarity transformations. The flow equation relating to momentum is solved analytically and then the heat equation using the Kummer's function. The analysis reveals that for the increase in magnitude of viscoelastic parameter both the velocity and temperature for a fixed point increase for second-grade fluid and both decrease for Walter's liquid B. Due to increase in Prandtl number and heat sink parameter, the thermal boundary layer thickness reduces, whereas increasing heat source parameter increases that thickness. Key words: Boundary layer flow; Heat transfer; Viscoelastic fluid; Stretching sheet; Heat generation or absorption DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9590 BJSIR 2011; 46(4): 451-456


2017 ◽  
Vol 378 ◽  
pp. 125-136 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
K. Ganesh Kumar ◽  
S. Manjunatha ◽  
Bijjanal Jayanna Gireesha

A comprehensive numerical study is conducted to investigate effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro polar fluid over a stretching surface with fluid particles suspension. Using suitable transformations, the governing equations of the problem are transformed in to a set of coupled nonlinear ordinary differential equations and then they are solved numerically using the Runge–Kutta–Fehlberg-45 method with the help of shooting technique. Authentication of the current method is proved by having compared with established results with limiting solution. The impact of the various stimulating parameters on the flow and heat transfer is analyzed and deliberated through plotted graphs in detail. We found that the velocity, angular velocity and temperature fields increase with an increase in the melting process of the stretching sheet. Also it is visualize that the shear stress factor is lower for micro polar fluids as compared to Newtonian fluids, which may be beneficial in flow and heat control of polymeric processing.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
B. C. Prasannakumara ◽  
B. J. Gireesha ◽  
M. R. Krishnamurthy ◽  
Rama Subba Reddy Gorla

AbstractWe analyzed the effects of Biot number and non-uniform heat source/sink on boundary layer flow and nonlinear radiative heat transfer of fluid particle suspension over an unsteady stretching surface embedded in a porous medium with nanoparticles. We considered conducting dust particles embedded with -water nanopartcles. The governing equations are transformed into nonlinear ordinary differential equations by using local similarity transformations and solved numerically using Runge–Kutta-Fehlberg-45 order method along with shooting technique. The effects of non-dimensional parameters on velocity and temperature profiles for fluid phase and dust phase are discussed and presented through graphs. Also, friction factor and Nusselt number are discussed and presented through graphs. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction parameter increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.


Sign in / Sign up

Export Citation Format

Share Document