scholarly journals A quantum method for thermal rate constant calculations from stationary phase approximation of the thermal flux-flux correlation function integral

2017 ◽  
Vol 146 (21) ◽  
pp. 214115 ◽  
Author(s):  
Chiara Aieta ◽  
Michele Ceotto
Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses a direct approach to the calculation of the rate constant k(T) that bypasses the detailed state-to-state reaction cross-sections. The method is based on the calculation of the reactive flux across a dividing surface on the potential energy surface. Versions based on classical as well as quantum mechanics are described. The classical version and its relation to Wigner’s variational theorem and recrossings of the dividing surface is discussed. Neglecting recrossings, an approximate result based on the calculation of the classical one-way flux from reactants to products is considered. Recrossings can subsequently be included via a transmission coefficient. An alternative exact expression is formulated based on a canonical average of the flux time-correlation function. It concludes with the quantum mechanical definition of the flux operator and the derivation of a relation between the rate constant and a flux correlation function.


1975 ◽  
Vol 12 (7) ◽  
pp. 2031-2036 ◽  
Author(s):  
Hector Moreno ◽  
H. M. Fried

1991 ◽  
Vol 46 (5) ◽  
pp. 416-418
Author(s):  
K. N. Khanna ◽  
Abdul Quayoum

AbstractThe specific heat of liquid metals is calculated using a fluid of Percus-Yevick plus tail as a reference system together with the Cumming potential in a random-phase approximation. It is shown that the improved semi-empirical hard sphere direct correlation function proposed by Colot et al. leads to a drastic improvement of Cp values over the HS model


Sign in / Sign up

Export Citation Format

Share Document