Overview of nanofluid application through minimum quantity lubrication (MQL) in metal cutting process

Author(s):  
Safian Sharif ◽  
Ibrahim Ogu Sadiq ◽  
Mohd Azlan Suhaimi ◽  
Shayfull Zamree Abd Rahim
2012 ◽  
Vol 579 ◽  
pp. 193-200 ◽  
Author(s):  
Kuan Ming Li

Mechanical micromachining is a promising technique for making complex microstructures. It is challenging to apply mechanical micromachining in the industry due to the low strength of micro tools. Therefore, it is not easy to accurately control the product dimension error and to raise the production rate. In this paper, the applications of minimum quantity lubrication (MQL) in micro-milling and micro-grinding are presented. MQL is considered as a green manufacturing technology in metal cutting due to its low impact on the environment and human health. This study compares the tool wear and surface roughness in MQL micromachining to completely dry condition based on experimental investigations. The supply of MQL in vibration-assisted grinding is also studied. It is found that the use of MQL results in longer tool life and better surface roughness in mechanical micromachining.


2014 ◽  
Vol 541-542 ◽  
pp. 392-396
Author(s):  
K. Abou-El-Hossein

In turning operations a coolant is usually introduced to the cutting zone to reduce the friction developed at the tool-workpiece contact area and remove heat generated because of this rubbing action. Conventionally, a coolant is introduced into the cutting zone in excessive quantities. However, a lot of concern has been raised recently as a result of the uncontrolled using of coolants in the metal cutting industry. Therefore, the concept of minimum quantity lubricant (MQL) has been introduced recently. In this paper, the principle of MQL is utilised in machining of a steel grade. The performance of MQL in terms of surface finish is evaluated against both, the flood coolant and dry cutting modes. The results obtained show that MQL produces acceptable surface finish. Therefore, it is highly recommended to consider the application of MQL instead of flood cooling when turning steel grades.


2019 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
Mohsen Mosleh ◽  
Khosro Shirvani ◽  
Sonya Smith ◽  
John Belk ◽  
Gary Lipczynski

In minimum quantity lubrication (MQL), an aerosol containing a minimum amount of the cutting fluid is delivered to the tool/workpiece interface during the metal cutting operation. The fluid lubrication by the fluid and the cooling by the compressed air in the aerosol improves the cutting process, while the low consumption rate in MQL provides less cleanup and reduces the associated cost. In this paper, molybdenum disulfide (MoS2) and hexagonal boron nitride (hBN) nanoparticles were added to the aerosol for providing a third functionality to the MQL, which is solid lubrication at the interface. Both orbital drilling and tribological testing using a four-ball tester were studied to examine the effectiveness of solid lubrication in MQL. In orbital drilling of titanium with tungsten carbide tools, MQL with nanofluids containing MoS2 nanoparticles resulted in less transfer film buildup on the tool. In four-ball testing, MQL with nanofluids with MoS2 and hBN nanoparticles yielded lower surface temperatures and less variation of frictional torques in titanium.


2011 ◽  
Vol 181-182 ◽  
pp. 1013-1017
Author(s):  
Ru Ting Xia

The present study show that metal cutting fluids changes the machinability because of their lubrication and cooling in turning 1Cr18Ni9Ti steel under minimum quantity lubrication (MQL) Machining. The experiments compares the mechanical performance of MQL to completely dry lubrication for the turning of 1Cr18Ni9Ti steel based on experimental measurement of cutting temperature, cutting forces, surface roughness, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip-tool interaction, reduced tool wears, surface roughness, and dimensional deviation.


2017 ◽  
Vol 31 (2) ◽  
pp. 17 ◽  
Author(s):  
Sirsendu Mahata ◽  
Ankesh Samanta ◽  
Joydip Roy ◽  
Bijoy Mandal ◽  
Santanu Das

Sign in / Sign up

Export Citation Format

Share Document