Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

2017 ◽  
Author(s):  
A. G. Malikov
2021 ◽  
Vol 4 (5) ◽  
pp. 35-44
Author(s):  
R. El'cov

the main goal of this article is to obtain welded permanent joints of modern thermally hardened aluminum and aluminum-lithium alloys made by laser welding, having mechanical characteristics (temporary tensile resistance, yield strength, elongation at break) and structural-phase composition close to or equal to the base alloy. It is shown for the first time that by controlling the parameters of heat treatment of samples with a welded joint of all studied aluminum-lithium alloys, it is possible to purposefully influence the formation of the specified mechanical properties of the weld by changing the structural and phase composition of the weld. The evolution of the struc-tural and phase composition of welded joints of thermally hardened aluminum and aluminum-lithium alloys has been investigated using modern independent diagnostic methods: for the first time, the use of synchrotron radia-tion diffractometry in combination with high-resolution transmission, scanning electron and optical microscopy. The dependences of the increment of deformation under cyclic loading with amplitudes exceeding the elastic limit on temperature are established. For untreated welded joints, it was found that at +85 C, the inhomogeneity of the deformation increment increases, and its speed increases by 8 times for alloy 1461, 5 times for alloy 1420 and 1.5 times for alloy 1441. At a temperature of -60 0C, alloys 1420 and 1461 have hardening stages, during which the value of deformation decreases at given boundary stress values. At +20 0C, there is a uniform increment of defor-mation and an increase in the amplitude of deformation with an increase in the amplitude of stress. At +85 0C, the strain amplitude does not change with increasing stress amplitude, its value is 0.55-0.5 of the strain amplitude at +20 0C. Based on the research results, technological techniques have been developed that allow obtaining me-chanical characteristics and structural-phase compositions of welded joints close to the main alloy during laser welding of aviation thermally hardened aluminum and aluminum-lithium alloys of the Al-Mg-Cu. Al-Mg-Li, Al-Cu-Mg-Li, Al-Cu-Li systems.


2019 ◽  
Vol 85 (7) ◽  
pp. 28-35
Author(s):  
Aleksey A. Skupov ◽  
Aleksey V. Scherbakov ◽  
Svetlana V. Sbitneva ◽  
Eva A. Lukina

The use of rare earth elements for alloying of aluminum alloys is a promising direction nowadays — filler materials doped with rare earth metals (REM) improve the mechanical properties of welded joints of high-strength aluminum-lithium alloys compared to serial filler material. The results of studying the effect of the composition of alloyed filler materials Sv1209 and Sv1221 and heat treatment mode on the mechanical properties and structure of welded joints of high-strength aluminum-lithium alloys B-1461 and B-1469 are presented. It is shown that the use of filler materials alloyed with rare earth metals in combination with full heat treatment (quenching and artificial aging) carried out after welding provide an increase in the strength characteristics of the welded joint to the level of strength of the base material with sufficiently high ductility and toughness. Metallographic study of welded joints after heat treatment revealed a fine-grained structure in the center of welds attributed to alloying of the filler with REM. Transmission electron microscopy is used to study precipitated hardening phases in welded joints. The round-shaped phase Al3(Sc, Zr) and a fine δ’-phase precipitated upon cooling of the welded joint are present in weld adjacent zone of V-1469 alloy. At the same time, artificial aging after welding results in formation of copper-containing Ω’- and θ’-phases. Quenching and artificial aging of the welded joint resulted in an increase in the size of precipitated hardening T1’-, S’-, θ’-phases and density of their distribution in the grain volume in the heat-affected zone of V-1461 alloy. Thus, heating upon welding leads to uneven phase precipitation, whereas additional artificial aging aggravates the non-uniformity of decomposition through partial dissolution of some phases and coarsening of the other.


2021 ◽  
Vol 2077 (1) ◽  
pp. 012011
Author(s):  
A G Malikov ◽  
A.I. Ancharov

Abstract A study of laser welding of modern aluminum-lithium alloys has been carried out. Optimization of post heat treatment of laser welded joints has been carried out. The change in the structural-phase composition of welded joints was investigated. The strength of welded joints after heat treatment was equal to the strength of the base alloy.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


1986 ◽  
Vol 17 (4) ◽  
pp. 635-643 ◽  
Author(s):  
J. M. Papazian ◽  
R. L. Schulte ◽  
P. N. Adler

1989 ◽  
Vol 37 (1) ◽  
pp. 78-94 ◽  
Author(s):  
D.B. Williams ◽  
R. Levi-Setti ◽  
J.M. Chabala ◽  
Y.L. Wang ◽  
D.E. Newbury

Sign in / Sign up

Export Citation Format

Share Document