Study of the fractality of magnetized plasma using an MHD shell model driven by solar wind data

2018 ◽  
Vol 25 (9) ◽  
pp. 092302 ◽  
Author(s):  
Macarena Domínguez ◽  
Giuseppina Nigro ◽  
Víctor Muñoz ◽  
Vincenzo Carbone
2021 ◽  
Vol 214 ◽  
pp. 105524
Author(s):  
Víctor Muñoz ◽  
Macarena Domínguez ◽  
Giuseppina Nigro ◽  
Mario Riquelme ◽  
Vincenzo Carbone

2017 ◽  
Author(s):  
Víctor Muñoz ◽  
Macarena Domínguez ◽  
Juan Alejandro Valdivia ◽  
Simon Good ◽  
Giuseppina Nigro ◽  
...  

Abstract. We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from Dst data and from an MHD shell model for a turbulent magnetized plasma, which may be a useful model to study geomagnetic activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind during magnetic clouds. Results suggest that the fractal dimension is able to characterize the complexity of the magnetic cloud structure.


2018 ◽  
Vol 25 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Víctor Muñoz ◽  
Macarena Domínguez ◽  
Juan Alejandro Valdivia ◽  
Simon Good ◽  
Giuseppina Nigro ◽  
...  

Abstract. We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from the Dst data and from a magnetohydrodynamic shell model for turbulent magnetized plasma, which may be a useful model to study geomagnetic activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind during magnetic clouds, which suggest that it is possible, by means of the fractal dimension, to characterize the complexity of the magnetic cloud structure.


2010 ◽  
Vol 28 (2) ◽  
pp. 381-393 ◽  
Author(s):  
L. Cai ◽  
S. Y. Ma ◽  
Y. L. Zhou

Abstract. Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW) and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min). This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring current decay which involves various decay mechanisms with ion lifetimes from tens of minutes to tens of hours. The Elman network makes feedback from hidden layer to input only one step, which is of 5 min for SYM-H index in this work and thus insufficient to catch the characteristic time length.


Space Weather ◽  
2020 ◽  
Vol 18 (8) ◽  
Author(s):  
C. Forsyth ◽  
C. E. J. Watt ◽  
M. K. Mooney ◽  
I. J. Rae ◽  
S. D. Walton ◽  
...  

2014 ◽  
Vol 796 (2) ◽  
pp. 111 ◽  
Author(s):  
Roberto Lionello ◽  
Marco Velli ◽  
Cooper Downs ◽  
Jon A. Linker ◽  
Zoran Mikić

2017 ◽  
Vol 839 (1) ◽  
pp. 55 ◽  
Author(s):  
Sunny Vagnozzi ◽  
Katherine Freese ◽  
Thomas H. Zurbuchen

2020 ◽  
Vol 27 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Macarena Domínguez ◽  
Giuseppina Nigro ◽  
Víctor Muñoz ◽  
Vincenzo Carbone ◽  
Mario Riquelme

Abstract. The description of the relationship between interplanetary plasma and geomagnetic activity requires complex models. Drastically reducing the ambition of describing this detailed complex interaction and, if we are interested only in the fractality properties of the time series of its characteristic parameters, a magnetohydrodynamic (MHD) shell model forced using solar wind data might provide a possible novel approach. In this paper we study the relation between the activity of the magnetic energy dissipation rate obtained in one such model, which may describe geomagnetic activity, and the fractal dimension of the forcing. In different shell model simulations, the forcing is provided by the solution of a Langevin equation where a white noise is implemented. This forcing, however, has been shown to be unsuitable for describing the solar wind action on the model. Thus, we propose to consider the fluctuations of the product between the velocity and the magnetic field solar wind data as the noise in the Langevin equation, the solution of which provides the forcing in the magnetic field equation. We compare the fractal dimension of the magnetic energy dissipation rate obtained, of the magnetic forcing term, and of the fluctuations of v⋅bz, with the activity of the magnetic energy dissipation rate. We examine the dependence of these fractal dimensions on the solar cycle. We show that all measures of activity have a peak near solar maximum. Moreover, both the fractal dimension computed for the fluctuations of v⋅bz time series and the fractal dimension of the magnetic forcing have a minimum near solar maximum. This suggests that the complexity of the noise term in the Langevin equation may have a strong effect on the activity of the magnetic energy dissipation rate.


Solar Physics ◽  
1989 ◽  
Vol 120 (1) ◽  
pp. 145-152 ◽  
Author(s):  
B. A. Lindblad ◽  
H. Lundstedt ◽  
B. Larsson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document