scholarly journals Solar Models in Light of New High Metallicity Measurements from Solar Wind Data

2017 ◽  
Vol 839 (1) ◽  
pp. 55 ◽  
Author(s):  
Sunny Vagnozzi ◽  
Katherine Freese ◽  
Thomas H. Zurbuchen
2010 ◽  
Vol 28 (2) ◽  
pp. 381-393 ◽  
Author(s):  
L. Cai ◽  
S. Y. Ma ◽  
Y. L. Zhou

Abstract. Similar to the Dst index, the SYM-H index may also serve as an indicator of magnetic storm intensity, but having distinct advantage of higher time-resolution. In this study the NARX neural network has been used for the first time to predict SYM-H index from solar wind (SW) and IMF parameters. In total 73 time intervals of great storm events with IMF/SW data available from ACE satellite during 1998 to 2006 are used to establish the ANN model. Out of them, 67 are used to train the network and the other 6 samples for test. Additionally, the NARX prediction model is also validated using IMF/SW data from WIND satellite for 7 great storms during 1995–1997 and 2005, as well as for the July 2000 Bastille day storm and November 2001 superstorm using Geotail and OMNI data at 1 AU, respectively. Five interplanetary parameters of IMF Bz, By and total B components along with proton density and velocity of solar wind are used as the original external inputs of the neural network to predict the SYM-H index about one hour ahead. For the 6 test storms registered by ACE including two super-storms of min. SYM-H<−200 nT, the correlation coefficient between observed and NARX network predicted SYM-H is 0.95 as a whole, even as high as 0.95 and 0.98 with average relative variance of 13.2% and 7.4%, respectively, for the two super-storms. The prediction for the 7 storms with WIND data is also satisfactory, showing averaged correlation coefficient about 0.91 and RMSE of 14.2 nT. The newly developed NARX model shows much better capability than Elman network for SYM-H prediction, which can partly be attributed to a key feedback to the input layer from the output neuron with a suitable length (about 120 min). This feedback means that nearly real information of the ring current status is effectively directed to take part in the prediction of SYM-H index by ANN. The proper history length of the output-feedback may mainly reflect on average the characteristic time of ring current decay which involves various decay mechanisms with ion lifetimes from tens of minutes to tens of hours. The Elman network makes feedback from hidden layer to input only one step, which is of 5 min for SYM-H index in this work and thus insufficient to catch the characteristic time length.


2018 ◽  
Vol 25 (9) ◽  
pp. 092302 ◽  
Author(s):  
Macarena Domínguez ◽  
Giuseppina Nigro ◽  
Víctor Muñoz ◽  
Vincenzo Carbone

Space Weather ◽  
2020 ◽  
Vol 18 (8) ◽  
Author(s):  
C. Forsyth ◽  
C. E. J. Watt ◽  
M. K. Mooney ◽  
I. J. Rae ◽  
S. D. Walton ◽  
...  

Solar Physics ◽  
1989 ◽  
Vol 120 (1) ◽  
pp. 145-152 ◽  
Author(s):  
B. A. Lindblad ◽  
H. Lundstedt ◽  
B. Larsson
Keyword(s):  

1999 ◽  
Vol 17 (10) ◽  
pp. 1268-1275 ◽  
Author(s):  
H. Gleisner ◽  
H. Lundstedt

Abstract. Geomagnetic storms and substorms develop under strong control of the solar wind. This is demonstrated by the fact that the geomagnetic activity indices Dst and AE can be predicted from the solar wind alone. A consequence of the strong control by a common source is that substorm and storm indices tend to be highly correlated. However, a part of this correlation is likely to be an effect of internal magnetospheric processes, such as a ring-current modulation of the solar wind-AE relation. The present work extends previous studies of nonlinear AE predictions from the solar wind. It is examined whether the AE predictions are modulated by the Dst index.This is accomplished by comparing neural network predictions from Dst and the solar wind, with predictions from the solar wind alone. Two conclusions are reached: (1) with an optimal set of solar-wind data available, the AE predictions are not markedly improved by the Dst input, but (2) the AE predictions are improved by Dst if less than, or other than, the optimum solar-wind data are available to the net. It appears that the solar wind-AE relation described by an optimized neural net is not significantly modified by the magnetosphere's Dst state. When the solar wind alone is used to predict AE, the correlation between predicted and observed AE is 0.86, while the prediction residual is nearly uncorrelated to Dst. Further, the finding that Dst can partly compensate for missing information on the solar wind, is of potential importance in operational forecasting where gaps in the stream of real time solar-wind data are a common occurrence.Key words. Magnetospheric physics (solar wind · magnetosphere interactions; storms and substorms)


2014 ◽  
Vol 41 (23) ◽  
pp. 8176-8184 ◽  
Author(s):  
B. A. Carter ◽  
J. M. Retterer ◽  
E. Yizengaw ◽  
K. Wiens ◽  
S. Wing ◽  
...  

2014 ◽  
Vol 112 ◽  
pp. 10-19 ◽  
Author(s):  
Virginia Klausner ◽  
Arian Ojeda González ◽  
Margarete Oliveira Domingues ◽  
Odim Mendes ◽  
Andres Reinaldo Rodriguez Papa
Keyword(s):  

2019 ◽  
Vol 8 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Ferdinand Plaschke

Abstract. Accurate magnetic field measurements by fluxgate magnetometers onboard spacecraft require ground and regular in-flight calibration activities. Therewith, the parameters of a coupling matrix and an offset vector are adjusted; they are needed to transform raw magnetometer outputs into calibrated magnetic field measurements. The components of the offset vector are typically determined by analyzing Alfvénic fluctuations in the solar wind if solar wind measurements are available. These are characterized by changes in the field components, while the magnetic field modulus stays constant. In this paper, the following question is answered: how many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations? It is found that approximately 40 h of solar wind data are sufficient to achieve offset accuracies of 0.2 nT, and about 20 h suffice for accuracies of 0.3 nT or better if the magnetometer offsets do not drift within these time intervals and if the spacecraft fields do not vary at the sensor position. Offset determinations with uncertainties lower than 0.1 nT, however, would require at least hundreds of hours of solar wind data.


2005 ◽  
Vol 35 (3a) ◽  
pp. 592-596 ◽  
Author(s):  
Maurício José Alves Bolzan

Sign in / Sign up

Export Citation Format

Share Document